Skip to main content

The Relationship between Aristotelian and Hasse Diagrams

  • Conference paper
Book cover Diagrammatic Representation and Inference (Diagrams 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8578))

Included in the following conference series:

Abstract

The aim of this paper is to study the relationship between two important families of diagrams that are used in logic, viz. Aristotelian diagrams (such as the well-known ‘square of oppositions’) and Hasse diagrams. We discuss some obvious similarities and dissimilarities between both types of diagrams, and argue that they are in line with general cognitive principles of diagram design. Next, we show that a much deeper connection can be established for Aristotelian/Hasse diagrams that are closed under the Boolean operators. We consider the Boolean algebra \(\mathbb{B}_n\) with 2n elements, whose Hasse diagram can be drawn as an n-dimensional hypercube. Both the Aristotelian and the Hasse diagram for \(\mathbb{B}_n\) can be seen as (n − 1)-dimensional vertex-first projections of this hypercube; whether the diagram is Aristotelian or Hasse depends on the projection axis. We show how this account provides a unified explanation of the (dis)similarities between both types of diagrams, and illustrate it with some well-known Aristotelian/Hasse diagrams for \(\mathbb{B}_3\) and \(\mathbb{B}_4\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Howse, J., Stapleton, G., Taylor, J.: Spider diagrams. LMS Journal of Computation and Mathematics 8, 145–194 (2005)

    Article  MathSciNet  Google Scholar 

  2. Rodgers, P.: A survey of Euler diagrams. J. of Visual Lang. & Comp. (in press)

    Google Scholar 

  3. Shin, S.J.: The Iconic Logic of Peirce’s Graphs. MIT Press (2002)

    Google Scholar 

  4. Stapleton, G.: A survey of reasoning systems based on Euler diagrams. Electronic Notes in Theoretical Computer Science 134, 127–151 (2005)

    Article  Google Scholar 

  5. Stapleton, G., Howse, J., Rodgers, P.: A graph theoretic approach to general Euler diagram drawing. Theoretical Computer Science 411, 91–112 (2010)

    Article  MathSciNet  Google Scholar 

  6. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge U. P. (2002)

    Google Scholar 

  7. Demey, L.: Algebraic aspects of duality diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS, vol. 7352, pp. 300–302. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Demey, L.: Structures of oppositions for public announcement logic. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 313–339. Springer (2012)

    Google Scholar 

  9. Moretti, A.: The Geometry of Logical Opposition. Ph.D. thesis, Neuchâtel (2009)

    Google Scholar 

  10. Smessaert, H.: Boolean differences between two hexagonal extensions of the logical square of oppositions. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrams 2012. LNCS (LNAI), vol. 7352, pp. 193–199. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Smessaert, H.: The classical Aristotelian hexagon versus the modern duality hexagon. Logica Universalis 6, 171–199 (2012)

    Article  MathSciNet  Google Scholar 

  12. Smessaert, H., Demey, L.: Logical geometries and information in the square of oppositions. Forthcoming in Journal of Logic, Language and Information (2014)

    Google Scholar 

  13. Zellweger, S.: Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In: Houser, N., Roberts, D.D., Van Evra, J. (eds.) Studies in the Logic of Charles Peirce, pp. 334–386. Indiana University Press (1997)

    Google Scholar 

  14. Hurley, P.J.: A Concise Introduction to Logic, 11th edn. Wadsworth (2012)

    Google Scholar 

  15. Bernhard, P.: Visualizations of the square of opposition. Log. Univ. 2, 31–41 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Seuren, P.: The Logic of Language. Oxford University Press (2010)

    Google Scholar 

  17. Carnielli, W., Pizzi, C.: Modalities and Multimodalities. Springer (2008)

    Google Scholar 

  18. Lenzen, W.: How to square knowledge and belief. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 305–311. Springer (2012)

    Google Scholar 

  19. McNamara, P.: Deontic logic. In: Stanford Encyclopedia of Philosophy (2010)

    Google Scholar 

  20. Moretti, A.: The geometry of standard deontic logic. Log. Univ. 3, 19–57 (2009)

    Article  MathSciNet  Google Scholar 

  21. Blanché, R.: Structures Intellectuelles. Vrin (1966)

    Google Scholar 

  22. Jacoby, P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholasticism 24, 32–56 (1950)

    Article  Google Scholar 

  23. Sesmat, A.: Logique II. Les Raisonnements. La syllogistique. Hermann (1951)

    Google Scholar 

  24. Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Logical Investigations 10, 218–232 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  26. Chatti, S., Schang, F.: The cube, the square and the problem of existential import. History and Philosophy of Logic 32, 101–132 (2013)

    Article  MathSciNet  Google Scholar 

  27. Smessaert, H.: On the 3D visualisation of logical relations. Logica Universalis 3, 303–332 (2009)

    Article  MathSciNet  Google Scholar 

  28. Smessaert, H., Demey, L.: Logical and geometrical complementarities between Aristotelian diagrams. In: Dwyer, T., Purchase, H.C., Delaney, A. (eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 248–262. Springer, Heidelberg (2014)

    Google Scholar 

  29. Foldes, S.: A characterization of hypercubes. Discr. Math. 17, 155–159 (1977)

    Article  MathSciNet  Google Scholar 

  30. Harary, F., Hayes, J.P., Wu, H.J.: A survey of the theory of hypercube graphs. Computers & Mathematics with Applications 15, 277–289 (1988)

    Article  MathSciNet  Google Scholar 

  31. Kauffman, L.H.: The mathematics of Charles Sanders Peirce. Cybernetics & Human Knowing 8, 79–110 (2001)

    Google Scholar 

  32. Flower, J., Stapleton, G., Rodgers, P.: On the drawability of 3D Venn and Euler diagrams. Journal of Visual Languages & Computing (in press)

    Google Scholar 

  33. Sauriol, P.: Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue 7, 374–390 (1968)

    Article  Google Scholar 

  34. Tversky, B.: Prolegomenon to scientific visualizations. In: Gilbert, J.K. (ed.) Visualization in Science Education, pp. 29–42. Springer (2005)

    Google Scholar 

  35. Tversky, B.: Visualizing thought. Topics in Cognitive Science 3, 499–535 (2011)

    Article  Google Scholar 

  36. Strang, G.: Introduction to Linear Algebra. Wellesley-Cambridge Press (2009)

    Google Scholar 

  37. Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer (2009)

    Google Scholar 

  38. Smessaert, H., Demey, L.: The unreasonable effectiveness of bitstrings in logical geometry. In: 4th World Congress on the Square of Opposition (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demey, L., Smessaert, H. (2014). The Relationship between Aristotelian and Hasse Diagrams. In: Dwyer, T., Purchase, H., Delaney, A. (eds) Diagrammatic Representation and Inference. Diagrams 2014. Lecture Notes in Computer Science(), vol 8578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44043-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44043-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44042-1

  • Online ISBN: 978-3-662-44043-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics