Skip to main content

Membrane Lipids and Proteins as a Basis of Red Cell Shape and its Alterations

  • Chapter
Book cover Red Cell Membrane Transport in Health and Disease

Abstract

The peculiar, biconcave-discoidal, shape of the mammalian erythrocyte has intrigued scientists from many disciplines between theoretical physics and clinical medicine ever since its first observation following the invention of sufficiently magnifying microscopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P, Parker JC, (eds) (1989) Red blood cell membranes. Marcel Dekker, New York Allan D, Thomas P (1981) Ca+-induced biochemical changes in human erythrocytes and their relation to microvesiculation. Biochem J 198:433–440

    Google Scholar 

  • Anderson RA, Lovrien RE (1981) Erythrocyte membrane sidedness in lectin control of the Ca +-A23187- mediated diskocyte echinocyte conversion. Nature 292:158–161

    Article  ADS  Google Scholar 

  • Artmann GM, Sung KL, Horn T, Whittemore D, Norwich G, Chien S (1997) Micropipette aspiration of human erythrocytes induces echinocytes via membrane phospholipid translocation. Biophys J 72:1434–1441

    Article  Google Scholar 

  • Backman L (1986) Shape control in the human red blood cell. J Cell Sci 80:281–298

    Google Scholar 

  • Bassé F, Stout JG, Sims PJ, Wiedmer T (1996) Isolation of an erythrocyte membrane protein that mediates Ca +-dependent transbilayer movement of phospholipid. J Biol Chem 271:17205–17210

    Article  Google Scholar 

  • Baumann M (2001) Early stage shape change of human erythrocytes after application of electric field pulses. Mol Membr Biol 18:153–160

    Article  Google Scholar 

  • Bennett V (1990) Spectrin-based membrane skeleton: A multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev 70:1029–1065

    Google Scholar 

  • Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    Google Scholar 

  • Bessis M (1972) Red cell shapes. An illustrated classification and its rationale. Nouv Rev fr Hémat 12:721–746

    Google Scholar 

  • Bessis M (1973) Living blood cells and their ultrastructure. Springer-Verlag, Berlin

    Google Scholar 

  • Bessis M (1974) Corpuscles. Atlas of Red Blood Cell Shapes. Springer-Verlag, Berlin

    Google Scholar 

  • Bessis M (1977) La forme et la déformabilité des érythrocytes normaux et dans certaines anémies hémolytiques congénitales. Nouv Rev fr Hémat 18:75–94

    Google Scholar 

  • Bifano EM, Novak TS, Freedman JC (1984) Relationship between the shape and the membrane potential of human red blood cells. J Membrane Biol 82:1–13

    Article  Google Scholar 

  • Birchmeier W, Singer SJ (1977) On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol 73:647–659

    Article  Google Scholar 

  • Birchmeier W, Lanz JH, Winterhalter KH, Conrad MJ (1979) ATP-induced endocytosis in human erythrocyte ghosts. Characterization of the process and isolation of the endocy-tosed vesicles. J Biol Chem 254:9298–9304

    Google Scholar 

  • Blank ME, Hoefner DM, Diedrich DF (1994) Morphology and volume alterations of human erythrocytes caused by the anion transporter inhibitors, DIDS and p-azidobenzylphlorizin. Biochim Biophys Acta 1192:223–233

    Article  Google Scholar 

  • Boal DH (1994) Computer simulation of a model network for the erythrocyte cytoskeleton. Biophys J 67:521–529

    Article  Google Scholar 

  • Bobrowska-Hägerstrand M, Iglic A, Hägerstrand H (1997) Erythrocytes vesiculate at high pH. Cellular and Molecular Biology Letters 2:9–13

    Google Scholar 

  • Bobrowska-Hägerstrand M, Hägerstrand H, Iglic A (1998) Membrane skeleton and red blood cell vesiculation at low pH. Biochim Biophys Acta 1371:123–128

    Article  Google Scholar 

  • Broekhuyse RM (1974) Improved lipid extraction of erythrocytes. Clin Chim Acta 51:341–343

    Article  Google Scholar 

  • Bucki R, Bachelot-Loza C, Zachowski A, Giraud F, Sulpice JC (1998) Calcium induces phospholipid redistribution and microvesicle release in human erythrocyte membranes by independent pathways. Biochemistry 37:15383–15391

    Article  Google Scholar 

  • Bull BS, Brailsford D (1989) Red blood cell shape. In: Agre P, Parker JC (eds) Red blood cell membranes. Marcel Dekker, New York, pp 401–421

    Google Scholar 

  • Bull BS, Weinstein RS, Korpman RA (1986) On the thickness of the red cell membrane skeleton: Quantitative electron microscopy of maximally narrowed isthmus regions of intact cells. Blood Cells 12:25–42

    Google Scholar 

  • Canfield VA, Macey RI (1984) Anion exchange in human erythrocytes has a large activation volume. Biochim Biophys Acta 778:379–384

    Article  Google Scholar 

  • Carter DP, Fairbanks G (1984) Inhibition of erythrocyte membrane shape change by band 3 cytoplasmic fragment. J Cell Biochem 24:385–393

    Article  Google Scholar 

  • Cevc G, Marsh D (1987) Phospholipid bilayers: Physical principles and models. John Wiley & Sons, USA

    Google Scholar 

  • Chabanel A, Flamm M, Sung KL, Lee MM, Schachter D, Chien S (1983) Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. Biophys J 44:171–176

    Article  Google Scholar 

  • Chang SH, Low PS (2001) Regulation of the glycophorin C-protein 4.1 membrane-to-skeleton bridge and evaluation of its contribution to erythrocyte membrane stability. J Biol Chem 276:22223–22230

    Article  Google Scholar 

  • Chasis JA, Schrier SL (1989) Membrane deformability and the capacity for shape change in the erythrocyte. Blood 74:2562–2568

    Google Scholar 

  • Chasis JA, Mohandas N, Shohet SB (1985) Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand-induced association between glycophorin A and skeletal proteins. J Clin Invest 75:1919–1926

    Article  Google Scholar 

  • Connor J, Gillum K, Schroit AJ (1990) Maintenance of lipid asymmetry in red blood cells and ghosts: effect of divalent cations and serum albumin on the transbilayer distribution of phosphatidylserine. Biochim Biophys Acta 1025:82–86

    Article  Google Scholar 

  • Daleke DL, Huestis WH (1989) Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids. J Cell Biol 108:1375–1385

    Article  Google Scholar 

  • Deuticke B (1968) Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim Biophys Acta 163:494–500

    Article  Google Scholar 

  • Deuticke B (1977) Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev Physiol Biochem Pharmacol 78:1–97

    Article  Google Scholar 

  • Deuticke B, Schwister K (1989) Leaks induced by electrical breakdown in the erythrocyte membrane. In: Neumann E, Sowers A, Jordan CA (eds) Electroporation and Electrofu-sion in Cell Biology. Plenum Press, New York, pp 127–148

    Google Scholar 

  • Deuticke B, Grebe R, Haest CWM (1990) Action of drugs on the erythrocyte membrane. In: Harris JR (ed) Blood Cell Biochemistry, vol 1: Erythroid cells. Plenum Press, New York, pp 475–529

    Google Scholar 

  • Donath E, Voigt A (1986) Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model. Biophys J 49:493–499

    Article  Google Scholar 

  • Dumaswala VJ, Greenwalt TJ (1984) Human erythrocytes shed exocytic vesicles in vivo. Transfusion 24:490–492

    Article  Google Scholar 

  • Eidmann K (1997) Membranpotentialabhängigkeit der Translokation eines anionischen Ly-sophospholipids in der Erythrozytenmembran. MD Thesis RWTH Aachen, Shaker-Verlag

    Google Scholar 

  • Elgsaeter A, Mikkelsen A (1991) Shapes and shape changes in vitro in normal red blood cells. Biochim Biophys Acta 1071:273–290

    Article  Google Scholar 

  • Elgsaeter A, Stokke BT, Mikkelsen A, Branton D (1986) The molecular basis of erythrocyte shape. Science 234:1217–1223

    Article  ADS  Google Scholar 

  • Eriksson LEG (1990) On the shape of human red blood cells interacting with flat artificial surfaces — the ‘glass effect’. Biochim Biophys Acta 1036:193–201

    Article  Google Scholar 

  • Evans EA, Skalak R (1979) Mechanics and thermodynamics of biomembranes. CRC Crit Rev Bioeng 3:181–184

    Google Scholar 

  • Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617

    Article  Google Scholar 

  • Feo C, Mohandas N (1977) Clarification of role of ATP in red-cell morphology and function. Nature 265:166–168

    Article  ADS  Google Scholar 

  • Ferrell JE Jr, Huestis WH (1984) Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol 98:1992–1998

    Article  Google Scholar 

  • Ferrell JE Jr, Lee KJ, Huestis WH (1985) Membrane bilayer balance and erythrocyte shape: a quantitative assessment. Biochemistry 24:2849–2857

    Article  Google Scholar 

  • Fischer TM, Haest CWM, Stöhr M, Kamp D, Deuticke B (1978) Selective alteration of red cell deformability by SH-reagents. Evidence for an involvement of spectrin in membrane shear elasticity. Biochim Biophys Acta 510:270–282

    Article  Google Scholar 

  • Fuhrmann GF (1968) Kationentransport, Haemolyse und Fragmentieren von menschlichen Erythrozyten in Harnstofflösungen. Blut 16:321–327

    Article  Google Scholar 

  • Gedde MM, Huestis WH (1997) Membrane potential and human erythrocyte shape. Biophys J 72:1220–1233

    Article  Google Scholar 

  • Gedde MM, Davis DK, Huestis WH (1997) Cytoplasmic pH and human erythrocyte shape. Biophys J 72:1234–1246

    Article  Google Scholar 

  • Gedde MM, Yang E, Huestis WH (1999) Resolution of the paradox of red cell shape changes in low and high pH. Biochim Biophys Acta 1417:246–253

    Article  Google Scholar 

  • Gimsa J (1998) A possible molecular mechanism governing human erythrocyte shape. Biophys J 75:568–569

    Article  Google Scholar 

  • Gimsa J, Ried C (1995) Do band 3 protein conformational changes mediate shape changes of human erythrocytes? Mol Membr Biol 12:247–254

    Article  Google Scholar 

  • Glaser R (1998) Does the transmembrane potential (A1?) or the intracellular pH (pHi) control the shape of human erythrocytes? Biophys J 75:569–570

    Article  Google Scholar 

  • Grebe R, Schmid-Schönbein H (1985) Tangent counting for objective assessment of erythrocyte shape changes. Biorheology 22:455–469

    Google Scholar 

  • Grebe R, Wolff H, Schmid-Schönbein H (1988) Influence of red cell surface charge on red cell membrane curvature. Pflügers Arch 413:77–83

    Article  Google Scholar 

  • Gros M, Vrhovec S, Brumen M, Svetina S, Zeks B (1996) Low pH induced shape changes and vesiculation of human erythrocytes. Gen Physiol Biophys 15:145–163

    Google Scholar 

  • Grunze M, Forst B, Deuticke B (1980) Dual effect of membrane cholesterol on simple and mediated transport processes in human erythrocytes. Biochim Biophys Acta 600:860–869

    Article  Google Scholar 

  • Haest CWM (1982) Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim Biophys Acta 694:331–352

    Article  Google Scholar 

  • Haest CWM, Kamp D, Deuticke B (1997) Transbilayer reorientation of phospholipid probes in the human erythrocyte membrane. Lessons from studies on electroporated and resealed cells. Biochim Biophys Acta 1325:17–33

    Article  Google Scholar 

  • Haest CWM, Fischer TM, Plasa G, Deuticke B (1980a) Stabilization of erythrocyte shape by a chemical increase of membrane shear stiffness. Blood Cells 6:539–553

    Google Scholar 

  • Haest CWM, Plasa G, Kamp D, Deuticke B (1980b) Protein-lipid interaction in the erythrocyte membrane: relevance for structural properties. In: Lassen U, Ussing HH, Wieth JO (eds) Membrane transport in erythrocytes. Alfred Benzon Symposium 14, Munks-gaard, Kopenhagen, pp 108–119

    Google Scholar 

  • Hardy B, Schrier SL (1978) The role of spectrin in erythrocyte ghost endocytosis. Biochem Biophys Res Commun 81:1153–1161

    Article  Google Scholar 

  • Hägerstrand H, Isomaa B (1992) Morphological characterization of exovesicles and en-dovesicles released from human erythrocytes following treatment with amphiphiles. Biochim Biophys Acta 1109:117–126

    Article  Google Scholar 

  • Heinrich R, Gaestel M, Glaser R (1981) The electric potential across the erythrocyte membrane: A mathematical model. Acta biol med germ 40:765–770

    Google Scholar 

  • Heinrich V, Ritchie K, Mohandas N, Evans E (2001) Elastic thickness compressibility of the red cell membrane. Biophys J 81:1452–1463

    Article  Google Scholar 

  • Henseleit U, Plasa G, Haest CWM (1990) Effects of divalent cations on lipid flip-flop in the human erythrocyte membrane. Biochim Biophys Acta 1029:127–135

    Article  Google Scholar 

  • Henszen MMM, Weske M, Schwarz St, Haest CWM, Deuticke B (1997) Electric field pulses induce reversible shape transformation of human erythrocytes. Mol Membr Biol 14:195–204

    Article  Google Scholar 

  • Isomaa B, Hägerstrand H, Paatero G (1987) Shape transformations induced by amphiphiles in erythrocytes. Biochim Biophys Acta 899:93–103

    Article  Google Scholar 

  • Jinbu Y, Nakao M, Otsuka M, Sato S (1983) Two steps in ATP-dependent shape changes of human erythrocyte ghosts. Biochem Biophys Res Commun 112:384–390

    Article  Google Scholar 

  • Jinbu Y, Sato S, Nakao M (1984) Reversible shape change of Tri ton-treated erythrocyte ghosts induced by Ca2+ and Mg-ATP. Nature 307:376–378

    Article  ADS  Google Scholar 

  • Johnson RM, Robinson J (1976) Morphological changes in asymmetric erythrocyte membranes induced by electrolytes. Biochem Biophys Res Commun 70:925–931

    Article  Google Scholar 

  • Johnson RM, Taylor G, Meyer DB (1980) Shape and volume changes in erythrocyte ghosts and spectrin-actin networks. J Cell Biol 86:371–376

    Article  Google Scholar 

  • Kamp D, Sieberg T, Haest CWM (2001) Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesicula-tion of erythrocytes. Biochemistry 40:9438–9446

    Article  Google Scholar 

  • Khodadad JK, Waugh RE, Podolski JL, Josephs R, Steck TL (1996) Remodeling the shape of the skeleton in the intact red cell. Biophys J 70:1036–1044

    Article  Google Scholar 

  • King MJ (1994) Blood group antigens on human erythrocytes — Distribution, structure and possible functions. Biochim Biophys Acta 1197:15–44

    Article  Google Scholar 

  • Kleinzeller A (1996) William Hewson’s studies of red blood corpuscles and the evolving concept of a cell membrane. Am J Physiol 271:C1–C8

    Google Scholar 

  • Knowles DW, Tilley L, Mohandas N, Chasis JA (1997) Erythrocyte membrane vesicula-tion: model for the molecular mechanism of protein sorting. Proc Natl Acad Sci USA 94:12969–12974

    Article  ADS  Google Scholar 

  • Kuypers FA, Roelofsen B, Berendsen W, Op den Kamp JA, Van Deenen LL (1984) Shape changes in human erythrocytes induced by replacement of the native phosphatidylcholine with species containing various fatty acids. J Cell Biol 99:2260–2267

    Article  Google Scholar 

  • Lange Y, Slayton JM (1982) Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape. J Lipid Res 23:1121–1127

    Google Scholar 

  • Lelkes G, Fodor I (1991) Formation of large, membrane skeleton-free erythrocyte vesicles as a function of the intracellular pH and temperature. Biochim Biophys Acta 1065:135–144

    Article  Google Scholar 

  • Lenormand G, Henon S, Richert A, Simeon J, Gallet F (2001) Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. Biophys J 81:43–56

    Article  Google Scholar 

  • Leonards KS, Ohki S (1983) Isolation and characterization of large (0.5–1.0 micron) cy-toskeleton-free vesicles from human and rabbit erythrocytes. Biochim Biophys Acta 728:383–393

    Article  Google Scholar 

  • Lew VL, Bookchin RM (1986) Volume, pH, and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J Membrane Biol 92:57–74

    Article  Google Scholar 

  • Lin S, Huestis WH (1995) Wheat germ agglutinin stabilization of erythrocyte shape: role of bilayer balance and the membrane skeleton. Biochim Biophys Acta 1233:47–56

    Article  Google Scholar 

  • Lin S, Yang E, Huestis WH (1994) Relationship of phospholipid distribution to shape change in Ca+-crenated and recovered human erythrocytes. Biochemistry 33:7337–7344

    Article  Google Scholar 

  • Linss W, Pilgrim C, Feuerstein H (1991) How thick is the glycocalyx of human erythrocytes? Acta Histochem 91:101–104

    Article  Google Scholar 

  • Lovrien RE, Anderson RA (1980) Stoichiometry of wheat germ agglutinin as a morphology controlling agent and as a morphology protective agent for the human erythrocyte. J Cell Biol 85:534–548

    Article  Google Scholar 

  • Low PS, Willardson BM, Mohandas N, Rossi M, Shohet S (1991) Contribution of the band-3-ankyrin interaction to erythrocyte membrane mechanical stability. Blood 77:1581–1586

    Google Scholar 

  • Lux SE, Palek J (1995) Disorders of the red cell membrane. In: Handin RI, Lux SE, Stossel TP (eds) Blood. Principles and practice of hematology. J B Lippincott Company, Philadelphia, pp 1701–1818

    Google Scholar 

  • Macey RI, Adorante JS, Orme FW (1978) Erythrocyte membrane potentials determined by hydrogen ion distribution. Biochim Biophys Acta 512:284–295

    Article  Google Scholar 

  • Matayoshi ED (1980) Distribution of shape-changing compounds across the red cell membrane. Biochemistry 19:3414–3422

    Article  Google Scholar 

  • McGough AM, Josephs R (1990) On the structure of erythrocyte spectrin in partially expanded membrane skeletons. Proc Natl Acad Sci USA 87:5208–5212

    Article  ADS  Google Scholar 

  • Mehta NG (1983) Role of membrane integral proteins in the modulation of red cell shape by albumin, dinitrophenol and the glass effect. Biochim Biophys Acta 762:9–18

    Article  Google Scholar 

  • Mentzer WC, Lubin BH, Emmons S (1976) Correction of the permeability defect in hereditary stomatocytosis by dimethyladipimidate. N Engl J Med 294:1200–1204

    Article  Google Scholar 

  • Mohandas N, Chasis JA (1993) Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol 30:171–192

    Google Scholar 

  • Mohandas N, Feo C (1975) A quantitative study of the red cell shape changes produced by anionic and cationic derivatives of phenothiazine. Blood Cells 11:375–384

    Google Scholar 

  • Mohandas N, Greenquist AC, Shohet SB (1978) Bilayer balance and regulation of red cell shape changes. J Supramol Struct 9:453–458

    Article  Google Scholar 

  • Murdock RC, Reynolds C, Sarelius IH, Waugh RE (2000) Adaptation and survival of surface-deprived red blood cells in mice. Am J Physiol 279:C970–C980

    Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469:159–195

    Article  Google Scholar 

  • Nakao M (1990) Function and structure of red blood cell cytoskeleton. In: Harris JR (ed) Blood cell biochemistry, vol 1: Erythroid cells. Plenum Press, New York, pp 195–225

    Google Scholar 

  • Nakao M, Makao T, Yamazoe S (1960) Adenosine triphosphate and maintenance of shape of the human red cells. Nature 187:945–946

    Article  ADS  Google Scholar 

  • O’Toole PJ, Morrison IE, Cherry RJ (2000) Investigations of spectrin-lipid interactions using fluoresceinphosphatidylethanolamine as a membrane probe. Biochim Biophys Acta 1466:39–46

    Article  Google Scholar 

  • Patel VP, Fairbanks G (1981) Spectrin phosphorylation and shape change of human erythrocyte ghosts. J Cell Biol 88:430–440

    Article  Google Scholar 

  • Patel VP, Fairbanks G (1986) Relationship of major phosphorylation reactions and Mg-ATPase activities to ATP-dependent shape change of human erythrocyte membranes. J Biol Chem 261:3170–3177

    Google Scholar 

  • Pestonjamasp KN, Mehta NG (1995) Effect of antibodies to membrane skeletal proteins on the shape of erythrocytes and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes. Exp Cell Res 219:74–81

    Article  Google Scholar 

  • Peters LL, Shivdasani RA, Liu SC, Hanspal M, John KM, Gonzalez JM, Brugnara C, Gwynn B, Mohandas N, Alper SL, Orkin SH, Lux SE (1996) Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell 86:917–927

    Article  Google Scholar 

  • Picart C, Discher DE (1999) Actin protofilament orientation at the erythrocyte membrane. Biophys J 77:865–878

    Article  Google Scholar 

  • Platt OS (1995) The sickle syndromes. In: Handin RI, Lux SE, Stossel TP (eds) Blood. Principles and practice of hematology. J B Lippincott Company, Philadelphia, pp 1645–1700

    Google Scholar 

  • Ponder E (1948) Hemolysis and related phenomena. Grune & Stratton, New York

    Google Scholar 

  • Poser B, Deuticke B (1999) Transbilayer flip-flop and steady state distribution of dodecyl-sulfate (SDS) in the erythrocyte membrane: flip vs. flux. Biol Chem 380:S56–S56

    Google Scholar 

  • Rand RP, Burton AC, Canham P (1965) Reversible changes in shape of red cells in electrical fields. Nature 205:977–978

    Article  ADS  Google Scholar 

  • Rasia M, Bollini A (1998) Red blood cell shape as a function of medium’s ionic strength and pH. Biochim Biophys Acta 1372:198–204

    Article  Google Scholar 

  • Raval PJ, Carter DP, Fairbanks G (1989) Relationship of hemolysis buffer structure, pH and ionic strength to spontaneous contour smoothing of isolated erythrocyte membranes. Biochim Biophys Acta 983:230–240

    Article  Google Scholar 

  • Schmid-Schönbein H, Grebe R, Heidtmann H (1983) A new membrane concept for viscous RBC deformation in shear: spectrin oligomer complexes as a Bingham-fluid in shear and a dense periodic colloidal system in bending. Ann New York Acad Sci 416:225–254

    Article  ADS  Google Scholar 

  • Schrier SL, Zachowski A, Herve P, Kader JC, Devaux PF (1992) Transmembrane redistribution of phospholipids of the human red cell membrane during hypotonic hemolysis. Biochim Biophys Acta 1105:170–176

    Article  Google Scholar 

  • Schwarz S, Deuticke B, Haest CWM (1999a) Passive transmembrane redistributions of phospholipids as a determinant of erythrocyte shape change. Studies on electroporated cells. Mol Membr Biol 16:247–255

    Article  Google Scholar 

  • Schwarz S, Haest CWM, Deuticke B (1999b) Extensive electroporation abolishes experimentally induced shape transformations of erythrocytes: a consequence of phospholipid symmetrization? Biochim Biophys Acta 1421:361–379

    Article  Google Scholar 

  • Schwarz S (2000) Zum Einfluss von elektrischen Feldpulsen auf Dynamik und transversale Orientierung der Phospholipide in der Erythrocytenmembran. MD thesis RWTH Aachen

    Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655

    Google Scholar 

  • Sheetz MP (1983) Membrane skeletal dynamics: role in modulation of red cell deform-ability, mobility of transmembrane proteins, and shape. Semin Hematol 20:175–188

    Google Scholar 

  • Sheetz MP, Sawyer D (1978) Triton shells of intact erythrocytes. J Supramol Struct 8:399–412

    Article  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci USA 71:4457–4461

    Article  ADS  Google Scholar 

  • Sheetz MP, Singer SJ (1976) Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. J Cell Biol 70:247–251

    Article  Google Scholar 

  • Shen BW (1989) Ultrastructure and function of membrane skeleton. In: Agre P, Parker JC (eds) Red blood cell membranes. Marcel Dekker, New York, pp 261–297

    Google Scholar 

  • Simons TJ (1979) Vanadate — a new tool for biologists. Nature 281:337–338

    Article  ADS  Google Scholar 

  • Smith SK, Farnbach AR, Harrist FM, Hawes AC, Jackson LR, Judd AM, Vest RS, Sanchez S, Bell JD (2001) Mechanisms by which intracellular calcium induces susceptibility to secretory phospholipase A2 in human erythrocytes. J Biol Chem 276:22732–22741

    Article  Google Scholar 

  • Steck TL (1989) Red cell shape. In: Stein W, Brouner F (eds) Cell shape: Determinants, regulation and regulatory role. Academic Press, New York, pp 205–246

    Google Scholar 

  • Stewart GW, Argent AC, Dash BC (1993) Stomatin: a putative cation transport regulator in the red cell membrane. Biochim Biophys Acta 1225:15–25

    Article  Google Scholar 

  • Stokke BT, Mikkelsen A, Elgsaeter A (1986) Spectrin, human erythrocyte shapes, and mechanochemical properties. Biophys J 49:319–327

    Article  Google Scholar 

  • Takeuchi M, Miyamoto H, Sako Y, Komizu H, Kusumi A (1998) Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys J 74:2171–2183

    Article  Google Scholar 

  • Terada N, Fujii Y, Ohno S (1996) Three-dimensional ultrastructure of in situ membrane skeletons in human erythrocytes by quick-freezing and deep-etching method. Histol Histopathol 11:787–800

    Google Scholar 

  • Thelen B, Deuticke B (1988) Chemo-mechanical leak formation in human erythrocytes upon exposure to a water-soluble carbodiimide followed by very mild shear stress. I. Basic characteristics of the process. Biochim Biophys Acta 944:285–296

    Article  Google Scholar 

  • Tomishige M, Sako Y, Kusumi A (1998) Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 142:989–1000

    Article  Google Scholar 

  • Trotter WD (1956) The slide-coverslip disc-sphere transformation in mammalian erythrocytes. Brit J Haemat 2:65–74

    Article  Google Scholar 

  • Truong HTN, Daleke DL, Huestis WH (1993) Human erythrocyte shape regulation: interaction of metabolic and redox status. Biochim Biophys Acta 1150:51–56

    Article  Google Scholar 

  • Tse WT, Lux SE (1999) Red blood cell membrane disorders. Brit J Haematol 104:2–13

    Article  Google Scholar 

  • Tuvia S, Levin S, Bitler A, Korenstein R (1998) Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes. J Cell Biol 141:1551–1561

    Article  Google Scholar 

  • Verkleij AJ, Zwaal RF, Roelofsen B, Comfurius P, Kastelijn D, Van Deenen LL (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323:178–193

    Article  Google Scholar 

  • Viitala J, Järnefelt J (1985) The red cell surface revisited. Trends Biochem Sci 10:392–395

    Article  Google Scholar 

  • Wagner GM, Chiu DT, Yee MC, Lubin BH (1986) Red cell vesiculation — a common membrane physiologic event. J Lab Clin Med 108:315–324

    Google Scholar 

  • Waugh RE (1982) Temperature dependence of the yield shear resultant and the plastic viscosity coefficient of erythrocyte membrane. Implications about molecular events during membrane failure. Biophys J 39:273–278

    Article  Google Scholar 

  • Waugh RE (1996) Elastic energy of curvature-driven bump formation on red blood cell membrane. Biophys J 70:1027–1035

    Article  Google Scholar 

  • Waugh RE, Narla N, Jackson CN, Mueller TJ, Suzuki T, Dale GL (1992) Rheologic properties of senescent erythrocytes. Loss of surface area and volume with red blood cell age. Blood 79:1351–1358

    Google Scholar 

  • White JG (1974) Effects of an ionophore, A 23187, on the surface morphology of normal erythrocytes. Am J Pathol 77:507–518

    Google Scholar 

  • Williamson P, Kulick A, Zachowski A, Schlegel RA, Devaux PF (1992) Ca2+ induces transbilayer redistribution of all major phospholipids in human erythrocytes. Biochemistry 31:6355–6360

    Article  Google Scholar 

  • Wong P (1994) Mechanism of control of erythrocyte shape: a possible relationship to band 3. J Theor Biol 171:197–205

    Article  Google Scholar 

  • Yan Y, Winograd E, Viel A, Cronin T, Harrison SC, Branton D (1993) Crystal structure of the repetitive segments of spectrin. Science 262:2027–2030

    Article  ADS  Google Scholar 

  • Zhang D, Kiyatkin A, Bolin JT, Low PS (2000) Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3. Blood 96:2925–2933

    Google Scholar 

  • Zimmermann U (1986) Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol 105:175–256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deuticke, B. (2003). Membrane Lipids and Proteins as a Basis of Red Cell Shape and its Alterations. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics