Skip to main content

Selectable and Screenable Markers for Rice Transformation

  • Chapter

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 22))

Abstract

Rice transformation is a major goal in cereal biotechnology, not only because rice is the world’s most important food crop but also because this species has now been recognized as the model for cereal genomics. A number of alternative transformation strategies are available, the most widely used of which are particle bombardment (Christou et al. 1991) and Agrobacterium-mediated transformation (Hiei et al. 1994). Regardless of the chosen strategy, transformation is a low-efficiency process. Since most foreign genes introduced into plants do not confer a phenotype that can be used conveniently for the identification or selective propagation of transformed cells, marker genes must therefore be introduced along with the transgene of interest to provide such a phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldemita RR, Hodges TK (1996) Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199: 612–617

    Google Scholar 

  • Ayres NM, Park WD (1994) Genetic transformation of rice. Crit Rev Plant Sci 13: 219–239

    CAS  Google Scholar 

  • Baruah-Wolff J, Harwood WA, Lonsdale DA, Harvey A, Hull R, Snape JW (1999) Luciferase as a reporter gene for transformation studies in rice (Oryza sativa L.). Plant Cell Rep 18: 715–720

    Article  CAS  Google Scholar 

  • Bilang R, Futterer J, Sautter C (1999) Transformation of cereals. Genet Eng 21: 113–157

    Article  CAS  Google Scholar 

  • Campisi L, Yang Y, Yi Y, Heilig E, Herman B, Cassista AJ, Allen DW, Xiang H, Jack T (1999) Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J 17: 699–707

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Duan X, McElroy D, Wu R (1992) Regeneration of herbicide-resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Rep 11: 586–591

    Article  CAS  Google Scholar 

  • Caplan A, Dekeyser R, van Montagu M (1992) Selectable markers for rice transformation. Methods Enzymol 216: 426–441

    Article  PubMed  CAS  Google Scholar 

  • Chan M-T, Lee T-M, Chang H-H (1992) Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol 33: 577–583

    CAS  Google Scholar 

  • Chan M-T, Chang H-H, Ho S-L, Tong W-F, Yu S-M (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter//3-glucuronidase gene. Plant Mol Biol 22: 491–506

    Google Scholar 

  • Chen LL, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang SP, de Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16: 1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 3: 325–330

    Article  Google Scholar 

  • Christou P, Ford TL (1995) Parameters influencing stable transformation of rice embryonic tissue and recovery of transgenic plants using electric discharge particle acceleration. Ann Bot 75: 407–413

    Article  Google Scholar 

  • Christou P, Swain WF (1990) Cotransformation frequencies of foreign genes in soybean cell cultures. Theor Appl Genet 90: 97–104

    Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/technology 9: 957–962

    Article  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88: 10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Datta SK, Peterhans A, Datta K, Potrykus I (1990) Genetically engineered fertile indica rice recovered from protoplasts. Bio/technology 8: 736–740

    Article  CAS  Google Scholar 

  • De Block M, Debrouwer D (1991) Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82: 257–263

    Article  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518

    PubMed  CAS  Google Scholar 

  • Dekeyser R, Claes B, Marichal M, van Montagu M, Caplan A (1989) Evaluation of selectable markers for rice transformation. Plant Physiol 90: 217–223

    Article  PubMed  CAS  Google Scholar 

  • Depicker A, Herman L, Jacobs A, Schell J, van Montagu M (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Gen Genet 201: 477–484

    Article  CAS  Google Scholar 

  • Dessaux Y, Petit A (1994) Opines as screenable markers for plant transformation. In: Gelvin SB, Schilperoort RA (eds) Plant Molecular Biology Manual, 2nd edn. Marcel Dekker, New York, pp 1–12

    Google Scholar 

  • Dong J, Teng W, Buchholz WG, Hall TC (1996) Agrobacterium-mediated transformation of javanica rice. Mol Breed 2: 267–276

    Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94: 2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Duc LT, Fontana S, Bong BB, Tinjuangjun P, Sudhakar D, Twyman RM, Christou P, Kohli A (2000) Linear transgene constructs lacking vector backbone sequences generate low-copynumber transgenic plants with simple integration patterns. Transgenic Res 9: 11–19

    Article  PubMed  CAS  Google Scholar 

  • Gahakwa D, Bano Maqbool S, Fu X, Sudhakar D, Christou P, Kohli A (2000) Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgenes show similar behaviour in diverse genetic backgrounds. Theor Appl Genet 101: 388–399

    Article  CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Bio/technology 11: 1286–1292

    CAS  Google Scholar 

  • Golovkin MV, Abraham M, Morocz S, Bottka S, Feher A, Dudits D (1993) Production of trans- genic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90: 41–52

    Article  CAS  Google Scholar 

  • Greco R, Ouwerkerk PBF, Anke JCT, Favalli C, Beguiristain T, Puigdomenech P, Colombo L, Hoge JHC, Pereira A (2001) Early and multiple Ac transpositions in rice generated by an adjacent strong enhancer. Plant Mol Biol 46: 215–227

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58: 139–166

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Amos B (1995) GFP in plants. Trends Genet 11: 328–329

    Article  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Heim R, Tsein RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 1996 6: 178–182

    Article  Google Scholar 

  • Hellens R, Mullineaux P (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Helmer G, Casadaban M, Bevan M, Kayes L, Chilton M-D (1984) A new chimeric gene as a marker for plant transformation: the expression of Escherichia coli ß-galactosidase in sunflower and tobacco cells. Bio/technology 2: 520–527

    Article  CAS  Google Scholar 

  • Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983) Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303: 209–213

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza staiva L.) mediated by Agrobacterium and sequence analysis of the T-DNA. Plant J 6: 271–282

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Chen C (1995) Expression of Aequoria green fluorescent protein in plant cells. FEBS Lett 369: 331–334

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Xu XP, Li BJ (1997) Improved green fluorescent protein as a fast reporter of gene expression in plant cells. Biotechnol Tech 11: 133–136

    Article  CAS  Google Scholar 

  • Izawa T, Shimamoto K (1996) Becoming a model plant: the importance of rice to plant science. Trends Plant Sci 1: 95–99

    Article  Google Scholar 

  • Jang IC, Nahm BH, Kim JK (1999) Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Mol Breed 5: 453–461

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan M (1987) GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3910–3907

    Google Scholar 

  • Jeon J-S, Lee S, Jung K-H, Jun S-H, Jeong D-H, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han M-J, Sung R-J, Choi H-S, Yu J-H, Choi J-H, Cjo S-Y, Cha S-S, Kim S-I, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22: 561–570

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA, Snyder C, Jones JDG (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207: 471–477

    Article  CAS  Google Scholar 

  • Kertbundit S, Linacero R, Rouze P, Galis I, Macas J, Deboeck F, Renckens S, Hernalsteens J-P, de Greve H (1998) Analysis of T-DNA-mediated translational ß-glucuronidase gene fusions. Plant Mol Biol 36: 205–217

    Article  PubMed  CAS  Google Scholar 

  • Kohler RH, Zipfel WR, Webb WW, Hanson M (1997) The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 11: 613–621

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Gahakwa D, Vain P, Laurie DA, Christou P (1999) Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta 208: 88–97

    Article  CAS  Google Scholar 

  • Kohli A, Xiong J, Greco R, Christou P, Pereira A (2001) Tagged Transcriptome Display (TTD) in Indica rice using Ac transposition. Mol Gen Genet 266: 1–11

    CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10: 165–174

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Olsson O, Langridge WHR, Schell J, Szalay AA (1987) Expression and assembly of functional bacterial luciferase in plants. Proc Natl Acad Sci USA 84: 131–135

    Article  PubMed  CAS  Google Scholar 

  • Kunkell T, Niu QW, Chan YS, Chua NH (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17: 916–919

    Article  Google Scholar 

  • Li ZJ, Hayashimoto A, Murai N (1992) A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol 100: 662–668

    Article  PubMed  CAS  Google Scholar 

  • Maes T, de Keukeleire P, Gerats T (1999) Plant tagnology. Trends Plant Sci 4: 90–96

    Article  PubMed  Google Scholar 

  • McElroy D, Brettell RIS (1994) Foreign gene expression in transgenic cereals. Trends Biotechnol 12: 62–68

    Article  CAS  Google Scholar 

  • Meijer EGM, Schilperoort RA, Rueb S, van Osruygrok PE, Hensgens LAM (1991) Transgenic rice cell lines and plants–expression of transferred chimeric genes. Plant Mol Bio! 16: 807–820

    Article  CAS  Google Scholar 

  • Nagatani N, Takumi S, Tomiyama M, Shimada T, Tamiya E (1997) Semi-real time imaging of the expression of a maize polyubiquitin promoter-GFP gene in transgenic rice. Plant Sci 124: 49–56

    Article  CAS  Google Scholar 

  • Naylor LH (1999) Reporter gene techniques: the future is bright. Biochem Pharmacol 58: 745–757

    Article  Google Scholar 

  • Negrotto D, Jolley M, Beer S,Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19: 798–803

    CAS  Google Scholar 

  • Niedz RP, Sussman MR, Satterlee JS (1995) Green fluorescent protein: an in vitro reporter of plant gene expression. Plant Cell Rep 14: 403–406

    Article  CAS  Google Scholar 

  • Oard JH, Linscombe SD, Braverman MP, Jodari F, Blouin DC, Leech M, Kohli A, Vain P, Cooley JC, Christou P (1996) Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breed 2: 359–368

    Article  CAS  Google Scholar 

  • Ow DW, Wood KV, DeLuca M, de Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Pinson SRM, Smith RH (1996) T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol Bio132: 1135–1148

    Google Scholar 

  • Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Bio/technology 8: 33–38

    Google Scholar 

  • Rashid H, Yoki S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep 15: 727–730

    Article  CAS  Google Scholar 

  • Rathore KS, Chowdhury VK, Hodges TK (1993) Use of bar as a selectable marker gene for the production of herbicide-resistant rice plants from protoplasts. Plant Mol Biol 21: 871–884

    Article  PubMed  CAS  Google Scholar 

  • Sadasivam S, Gallie DR (1994) Isolation and transformation of rice aleurone protoplasts. Plant Cell Rep 13: 394–396

    CAS  Google Scholar 

  • Schocher RJ, Shillito RD, Saul RD, Paszkowski SJ, Potrykus I (1986) Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/technology 4: 1093–1096

    Article  CAS  Google Scholar 

  • Sheen J, Hwang S, Niwan Y, Kobayashi H, Galbraith DW (1995) Green fluorescent protein as a new vital marker in plant cells. Plant J 8: 777–784

    Article  PubMed  CAS  Google Scholar 

  • Sheng OJ, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8: 1699–1710

    Google Scholar 

  • Sudhakar D, Duc LT, Bong BB, Tinjuangjun P, Bano Maqbool S, Valdez M, Jefferson R, Christou P (1998) An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device. Transgenic Res 7: 289–294

    Article  CAS  Google Scholar 

  • Sundaresan V, Springer P, Volpe T, Haward S, Jones JDG, Dean C, Ma H, Martienssen RA (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9: 1797–1810

    Article  PubMed  CAS  Google Scholar 

  • Topping JF, Wei W, Lindsey K (1991) Functional tagging of regulatory elements in the plant genome. Development 112: 1009–1019

    PubMed  CAS  Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic plants after direct gene transfer into protoplasts. Bio/technology 6: 1072–1074

    Article  CAS  Google Scholar 

  • Twyman RM, Christou P, Stöger E (2001) Genetic transformation of plants and their cells. In: Oksman-Caldentey KM, Barz W (eds) Plant Biotechnology and Transgenic Plants. Marcel Dekker, New York

    Google Scholar 

  • Upadhyaya NM, Zhou XR, Wu LM, Ramm K, Dennis ES (2000) The tms2 gene as a negative selection marker in rice. Plant Mol Biol Rep 18: 227–233

    Article  CAS  Google Scholar 

  • Vain P, Worland B, Kohli A, Snape JW, Christou P (1998) The green fluorescent protein ( GFP) as a vital screenable marker in rice transformation. Theor Appl Genet 96: 164–169

    Google Scholar 

  • Van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299–302

    Article  Google Scholar 

  • Zhang HM, Yang H, Rech EL, Gold TJ, Davis AS, Mulligan BJ, Cocking EC, Davey MR (1988) Trans-genic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep 7: 379–383

    CAS  Google Scholar 

  • Zhang W, Wu R (1988) Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor Appl Genet 76: 835–840

    Article  Google Scholar 

  • Zubko E, Scutt C, Meyer P (2000) Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat Biotechnol 18: 442–445

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Twyman, R.M., Stöger, E., Kohli, A., Capell, T., Christou, P. (2002). Selectable and Screenable Markers for Rice Transformation. In: Jackson, J.F., Linskens, H.F. (eds) Testing for Genetic Manipulation in Plants. Molecular Methods of Plant Analysis, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04904-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04904-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07730-2

  • Online ISBN: 978-3-662-04904-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics