Skip to main content

Modellierungsansatz zur Abbildung gesamtmotorischer Reibungsverluste

  • Conference paper
  • First Online:

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

Gesetzliche Rahmenbedingungen hinsichtlich der zulässigen CO2-Emissionen sowie Kundenanforderungen bezüglich des Kraftstoffverbrauchs erfordern eine kontinuierliche Wirkungsgradsteigerung moderner Ottomotoren. Dabei stellt die Reduzierung der innermotorischen mechanischen Verluste (Reibung) ein adäquates Mittel dar, um diese Zielvorgaben zu erreichen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amtsblatt der Europäischen Union, Verordnung (EG) Nr. 443/2009 des Europäischen Parlaments und des Rates vom 23. April 2009. Nr. 433/2009, 2009.

    Google Scholar 

  2. United Nations – Economic and Social Council, Proposal for a new global technical regulation on the Worldwide harmonized Light vehicles Test Procedure (WLTP). ECE/Trans/WP.29/2014/27, 2014.

    Google Scholar 

  3. V. W. Wong and S. C. Tung, “Overview of automotive engine friction and reduction trends – Effects of surface, material, and lubricant-additive technologies,” Friction, vol. 4, no. 1, pp. 1–28, 2016.

    Google Scholar 

  4. C. Landerl, M. Rülicke, D. Spanring, and S. Schmuck-Soldan, “Die Ottomotorenfamilie des Next-Generation-Baukastens von BMW,” Motortechnische Zeitschrift, vol. 79, no. 3, pp. 40–47, Mar. 2018.

    Google Scholar 

  5. A. Merkle, B. Huber, and T. Spitznagel, “Symmetrische Formhonung in den neuen BMW 3- und 4-Zylinder- Ottomotoren,” in 6. ATZ-Fachtagung Tribologie – Reibungsminimierung im Antriebsstrang, 2017.

    Google Scholar 

  6. M. Werner, S. Graf, A. Merkle, and G. Wachtmeister, “Direkte Messung der Kolbengruppenreibung,” Motortechnische Zeitschrift, vol. 75, no. 1, pp. 72–79, Jan. 2014.

    Google Scholar 

  7. A. A. Merkle, “Maßnahmen zur Reduzierung der CO 2-Emissionen von Verbrennungsmotoren durch Reibungsoptimierung des tribologischen Systems Kolbengruppe,” Dissertation, Technische Universität München, 2015.

    Google Scholar 

  8. D. Sandoval and J. B. Heywood, “An Improved Friction Model for Spark- Ignition Engines,” SAE Technical Paper, no. 2003-1–725, 2003.

    Google Scholar 

  9. K. J. Patton, R. C. Nitschke, and J. B. Heywood, “Development and Evaluation of a Friction Model for Spark-Ignition Engines,” SAE Technical Paper, no. 890836, Feb. 1989.

    Google Scholar 

  10. G. D. Fischer, “Expertenmodell zur Berechnung der Reibungsverluste von Ottomotoren,” Dissertation, Technische Universität Darmstadt, 1999.

    Google Scholar 

  11. D. Dowson, C. M. Taylor, and L. Yang, “Friction Modelling for Internal Combustion Engines,” in Tribology Series, vol. 31, D. Dowson, Ed. Elsevier, 1996, pp. 301–318.

    Google Scholar 

  12. Q. Zhou, I. Shilling, and S. H. Richardson, “Prediction of total engine friction power loss from detailed component models,” in Tribology Series, vol. 41, D. Dowson, Ed. Elsevier, 2003, pp. 761–766.

    Google Scholar 

  13. J. F. Booker, “Dynamically Loaded Journal Bearings: Mobility Method of Solution,” Journal of Basic Engineering, vol. 87, p. 537, 1965.

    Google Scholar 

  14. C. M. Taylor, “Engine Bearings: Background and Lubrication Analysis,” in Tribology Series, vol. 26, C. M. Taylor, Ed. Elsevier, 1993, pp. 89–112.

    Google Scholar 

  15. J. A. Greenwood and J. H. Tripp, “The Contact of Two Nominally Flat Rough Surfaces,” Proceedings of the Institution of Mechanical Engineers, vol. 185, no. 1, pp. 625–633, Jun. 1970.

    Google Scholar 

  16. Schaeffler Gruppe Industrie and INA FAG, “Technische Grundlagen.” Technische Dokumentation, 2006.

    Google Scholar 

  17. GT-Suite, “Mechanics Theory Manual.” Gamma Technologies LLC, 2018.

    Google Scholar 

  18. GT-Suite, “Valvetrain Application Manual.” Gamma Technologies LLC, 2018.

    Google Scholar 

  19. J. I. McCool, “Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces,” Journal of Tribology, vol. 109, no. 2, p. 264, Apr. 1987.

    Google Scholar 

  20. E. Tomanik, H. Chacon, and G. Teixeira, “A simple numerical procedure to calculate the input data of Greenwood-Williamson model of asperity contact for actual engineering surfaces,” Tribology Series, vol. 41, pp. 205–215, Jan. 2003.

    Google Scholar 

  21. F. A. Martin, “Oil flow in plain steadily loaded journal bearings: realistic predictions using rapid techniques,” Journal of Engineering Tribology (Part J), vol. 212, pp. 413–425, 1997.

    Google Scholar 

  22. N. Patir and H. S. Cheng, “Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces,” Journal of Lubrication Technology, vol. 101, no. 2, p. 220, Apr. 1979.

    Google Scholar 

  23. D. Bartel, Simulation von Tribosystemen. Wiesbaden: Vieweg+Teubner, 2010.

    Google Scholar 

  24. B. J. Hamrock and D. Dowson, “Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation,” Journal of Lubrication Technology, vol. 98, no. 2, p. 223, Apr. 1976.

    Google Scholar 

  25. H. Moes, “Optimum similarity analysis with applications to elastohydrodynamic lubrication,” Wear, vol. 159, no. 1, pp. 57–66, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Krecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krecker, O., Huber, B. (2019). Modellierungsansatz zur Abbildung gesamtmotorischer Reibungsverluste. In: Liebl, J. (eds) Reibung in Antrieb und Fahrzeug 2018. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25302-8_2

Download citation

Publish with us

Policies and ethics