Skip to main content

An Overview of Deep Learning and Its Applications

  • Conference paper
  • First Online:
Fahrerassistenzsysteme 2018

Part of the book series: Proceedings ((PROCEE))

Abstract

Deep learning is the machine learning method that changed the field of artificial intelligence in the last five years. In the view of industrial research, this technology is disruptive: It considerably pushes the border of tasks that can be automated, changes the way applications are developed, and is available to virtually everyone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AnnotateMyData. http://annotatemydata.com/. Accessed 28 Feb 2018

  2. Angelova, A., et al.: Real-time pedestrian detection with deep network cascades. In: British Machine Vision Conference (BMVC), pp. 32.1–32.12 (2015)

    Google Scholar 

  3. Bahdanau, D., et al.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  4. Banko, M., Brill, E.: Scaling to very very large corpora for natural language disambiguation. In: 39th Annual Meeting ot the Association for Computational Linguistics (ACL), pp. 26–33 (2001)

    Google Scholar 

  5. Behrendt, K., et al.: A deep learning approach to traffic lights: detection, tracking, and classification. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1370–1377 (2017)

    Google Scholar 

  6. Bellman, R.: A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1954)

    MathSciNet  MATH  Google Scholar 

  7. Bojarski, M., et al. Explaining how a deep neural network trained with end-to-end learning steers a car. Computing Research Repository, arXiv:1704.07911 (2017)

  8. Boston Dynamics: Atlas Robot. https://www.bostondynamics.com/atlas. Accessed 28 Feb 2018

  9. Cheng, J., et al.: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 6(24454) (2016)

    Google Scholar 

  10. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734 (2014)

    Google Scholar 

  11. Clevert, D. et al.: Fast and accurate deep network learning by exponential linear units (ELUs). In: 4th International. Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  12. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223 (2016)

    Google Scholar 

  13. CrowdFlower. https://www.crowdflower.com/. Accessed 28 Feb 2018

  14. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control, Signals, Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  15. Dai, J., et al.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems (NIPS), vol. 29, pp. 379–387 (2016)

    Google Scholar 

  16. DiGiovanna, J., et al.: Coadaptive brain-machine interface via reinforcement learning. IEEE Trans. Biomed. Eng. 56(1), 54–64 (2009)

    Article  Google Scholar 

  17. Doersch, C., et al.: Unsupervised visual representation learning by context prediction. In: IEEE International Conference on Computer Vision (ICCV), pp. 1422–1430 (2015)

    Google Scholar 

  18. Dong, C., et al.: Learning a deep convolutional network for image super-resolution. In: 13th European Conference on Computer Vision (ECCV), pp. 184–199 (2014)

    Google Scholar 

  19. Duchi, J., et al.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Espinosa, J., et al.: Vehicle detection using AlexNet and Faster R-CNN deep learning models: a comparative study. In: 5th International Visual Informatics Conference (IVIC), pp. 3–15 (2017)

    Chapter  Google Scholar 

  21. Farfade, S., et al.: Multi-view face detection using deep convolutional neural networks. In: 5th ACM on International Conference on Multimedia Retrieval (ICMR), pp. 643–650 (2015)

    Google Scholar 

  22. Géron, A.: Hands-On Machine Learning with Scikit-Learn and Tensor-Flow. O’Reilly, Sebastopol (2017)

    Google Scholar 

  23. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  24. Glorot, X., et al.: Deep sparse rectifier neural networks. In: 14th International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  25. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (NIPS), pp. 2672–2680 (2014)

    Google Scholar 

  26. Goodfellow, I., et al.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  27. Google, Inc.: Neural network processor. Patent WO2016186801 (2016)

    Google Scholar 

  28. Greff, K., et al.: LSTM: a search space odyssey. IEEE Trans. Neural Networks Learn. Syst 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  29. He, K. et al.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034, 2015

    Google Scholar 

  30. He, K., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  31. He, K., et al.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  32. Hinton, G., et al.: A fast learning algorithm for deep belief nets. Neural Comput 18, 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  33. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  34. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  35. Hornik, K., et al.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  36. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3296–3297 (2017)

    Google Scholar 

  37. Hubel, D., Wiesel, T.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959)

    Article  Google Scholar 

  38. Intel Nervana. https://ai.intel.com/. Accessed 28 Feb 2018

  39. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: 32nd International Conference on International Conference on Machine Learning (ICML), pp. 448–456 (2015)

    Google Scholar 

  40. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 664–676 (2017)

    Article  Google Scholar 

  41. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: IEEE Int. Conference on ComputerVision (ICCV), pp. 66–75 (2017)

    Google Scholar 

  42. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  43. Krizhevsky, A. et al.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (NIPS), pp. 1090–1098 (2012)

    Google Scholar 

  44. Larsson, G., et al.: Colorization as a proxy task for visual understanding. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 840–849 (2017)

    Google Scholar 

  45. Le, Q., et al.: A simple way to initialize recurrent networks of rectified linear units. Computing Research Repository, abs/1504.00941 (2015)

    Google Scholar 

  46. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems 2 (NIPS), pp. 396–404 (1990)

    Google Scholar 

  47. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  48. LeCun, Y., et al.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  MathSciNet  Google Scholar 

  49. Levine, S., et al.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Levine, S., et al.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robo. Res. 37(4) (2017)

    Google Scholar 

  51. Li, Y., et al.: Fully convolutional instance-aware semantic segmentation. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4438–4446 (2017)

    Google Scholar 

  52. Littman, M.: Reinforcement learning improves behaviour from evaluative feedback. Nature 521(7553), 445–451 (2015)

    Article  Google Scholar 

  53. Liu, W., et al.: SSD: single shot multibox detector. In: 14th European Conference on Computer Vision (ECCV), pp. 396–404 (2016)

    Chapter  Google Scholar 

  54. Long, J., et al.: Fully convolutional networks for semantic segmentation. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  55. Luong, M., et al.: Effective approaches to attention-based neural machine translation. Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1412–1421 (2015)

    Google Scholar 

  56. Matti, D., et al.: Combining LiDAR space clustering and convolutional neural networks for pedestrian detection. In: 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017)

    Google Scholar 

  57. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  58. Mnih, V., et al.: Playing Atari with deep reinforcement learning. NIPS Deep Learning Workshop (2013)

    Google Scholar 

  59. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  60. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2). Sov. Math. Dokl 27(2), 372–376 (1983)

    MATH  Google Scholar 

  61. NVIDIA CUDA. https://developer.nvidia.com/cuda. Accessed 28 Feb 2018

  62. NVIDIA cuDNN. https://developer.nvidia.com/cudnn. Accessed 28 Feb 2018

  63. NVIDIA Jetson. https://developer.nvidia.com/embedded-computing. Accessed 28 Feb 2018

  64. NVIDIA Drive. https://developer.nvidia.com/drive. Accessed 28 Feb 2018

  65. Pathak, D. et al.: Context encoders: feature learning by inpainting. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)

    Google Scholar 

  66. Peters, J., Schaal, S.: Reinforcement learning of motor skills with policy gradients. Neural Netw. 21(4), 682–697 (2008)

    Article  Google Scholar 

  67. Pham, V., et al.: Dropout improves recurrent neural networks for handwriting recognition. In: 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 285–290 (2014)

    Google Scholar 

  68. Polyak, B.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  69. Redmon, J., et al.: You only look once: unified, real-time object detection. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  70. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (NIPS), pp. 91–99 (2015)

    Google Scholar 

  71. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)

    Article  Google Scholar 

  72. Rumelhart, D., et al.: Learning representations by back-propagating errors. Nature 323,533–536 (1986)

    Article  Google Scholar 

  73. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  74. Sak, H., et al.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: 15th Annual Conference of the International Speech Communication Association (INTERSPEECH), pp. 338–342 (2014)

    Google Scholar 

  75. Salimans, T., et al.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems 29 (NIPS), pp. 2234–2242 (2016)

    Google Scholar 

  76. Schulman, J., et al.: Trust region policy optimization. In: 32nd International Conference on International Conference on Machine Learning (ICML), pp. 1889–1897 (2015)

    Google Scholar 

  77. See, A., et al.: Get to the point: summarization with pointer-generator networks. In: 55th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 1073–1083 (2017)

    Google Scholar 

  78. Silver, D., et al.: Deterministic policy gradient algorithms. In: 31st International Conference on International Conference on Machine Learning (ICML), pp. 387–395 (2014)

    Google Scholar 

  79. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  80. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  81. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  82. Su, H., et al.: Crowdsourcing annotations for visual object detection. In: AAAI Human Computation Workshop, pp. 40–46 (2012)

    Google Scholar 

  83. Sutskever, I., et al.: Sequence to sequence learning with neural networks. In: Neural Information Processing Systems 27 (NIPS), pp. 3104–3112 (2014)

    Google Scholar 

  84. Szegedy, C., et al.: Going deeper with convolutions. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  85. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

    Google Scholar 

  86. Szegedy, C., et al.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence, pp. 4278–4284 (2017)

    Google Scholar 

  87. Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM 38(3), 58–68 (1995)

    Article  Google Scholar 

  88. Waymo: Google self-driving car. https://waymo.com/. Accessed 28 Feb 2018

  89. Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. PhD thesis, Harvard University (1974)

    Google Scholar 

  90. Werbos, P.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)

    Article  Google Scholar 

  91. Williams, R.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    MATH  Google Scholar 

  92. Wilson, A., et al.: The marginal value of adaptive gradient methods in machine learning. In: Advances in Neural Information Processing Systems 30 (NIPS), pp. 4151–4161 (2017)

    Google Scholar 

  93. Xu, B., et al.: Empirical evaluation of rectified activations in convolutional network. In: ICML Deep Learning Workshop, 06–11 July 2015

    Google Scholar 

  94. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: 32nd International Conference on International Conference on Machine Learning (ICML), pp. 2048–2057 (2015)

    Google Scholar 

  95. Zeiler M., Fergus, R.: Visualizing and understanding convolutional networks. In: 13th European Conference on Computer Vision (ECCV), pp. 818–833 (2014)

    Google Scholar 

  96. Zhang, Y., et al.: Augmenting supervised neural networks with unsupervised objectives for large-scale image classification. In: 33rd International Conference on International Conference on Machine Learning (ICML), pp. 612–621 (2016)

    Google Scholar 

  97. Zhu, Z., et al.: Traffic sign detection and classification in the wild. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2110–2118 (2016)

    Google Scholar 

  98. Zoph, B., Le, Q.: Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vogt, M. (2019). An Overview of Deep Learning and Its Applications. In: Bertram, T. (eds) Fahrerassistenzsysteme 2018. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-23751-6_17

Download citation

Publish with us

Policies and ethics