Skip to main content

Prediction of the 2D macro-scale fragmentation of tempered glass using random Voronoi tessellations

  • Conference paper
  • First Online:
Forschungskolloquium 2018 Grasellenbach

Zusammenfassung

Thermally tempered glass will fragmentize completely into many pieces, if the equilibrated residual stress state within the glass plate is disturbed sufficiently and if the elastic strain energy in the glass is large enough [1], [2], [3], the fragmentation is the direct consequence of the elastic strain energy that is stored inside the material due to the residual stress state [4],[5]. The fragment size depends on the amount of the stored energy. Small fragments are caused by highly stored strain energy due to the high residual stress state originating from the extremely rapid cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. N. Pourmoghaddam und J. Schneider, „Experimental investigation into the fragment size of tempered glass“, Glas. Struct. Eng., Bd. 3, Nr. 2, S. 167–181, 2018.

    Google Scholar 

  2. K. Akeyoshi und E. Kanai, „Mechanical Properties of Tempered Glass“, VII int. congr. og Glas., Nr. paper 80, 1965.

    Google Scholar 

  3. M. P. Silverman, W. Strange, J. Bower, und L. Ikejimba, „Fragmentation of explosively metastable glass“, Phys. Scr., Bd. 85, Nr. 6, 2012.

    Google Scholar 

  4. J. H. Nielsen, „Remaining stress-state and strain-energy in tempered glass fragments“, Glas. Struct. Eng., Bd. 2, Nr. 1, S. 45–56, 2017.

    Google Scholar 

  5. J. H. Nielsen und M. Bjarrum, „Deformations and strain energy in fragments of tempered glass: experimental and numerical investigation“, Glas. Struct. Eng., Bd. 2, Nr. 2, S. 133–146, 2017.

    Google Scholar 

  6. G. Molnár, M. Ferentzi, Z. Weltsch, G. Szebényi, L. Borbás, und I. Bojtár, „Fragmentation of wedge loaded tempered structural glass“, Glas. Struct. Eng., Bd. 1, Nr. 2, S. 385–394, 2016.

    Google Scholar 

  7. N. Pourmoghaddam, M. A. Kraus, J. Schneider, und G. Siebert, „A theoretical method for the prediction of the 2D macro-scale fragmentation of glass - Part I: The Methodology“, Glas. Struct. Eng., Bd. Submitted, 2018.

    Google Scholar 

  8. A. . A. . Griffith, „The Phenomena of Rupture and Flow in Solids“, Philos. Trans. R. Soc. London, Bd. 221, Nr. 1921, S. 163–198, 1920.

    Google Scholar 

  9. N. Pourmoghaddam, M. A. Kraus, J. Schneider, und G. Siebert, „The geometrical properties of random 2D Voronoi tesselations for the prediction of the tempered glass fracture pattern“, in Engineered Transparency International Conference At Glasstec, 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pourmoghaddam, N., Kraus, M.A., Schneider, J., Siebert, G. (2018). Prediction of the 2D macro-scale fragmentation of tempered glass using random Voronoi tessellations. In: Schneider, J., Kiziltoprak, N. (eds) Forschungskolloquium 2018 Grasellenbach. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-23627-4_21

Download citation

Publish with us

Policies and ethics