Skip to main content

Fourier Transform Infrared Spectroscopy

  • Chapter

Part of the book series: Springer Series in Wood Science ((SSWOO))

Abstract

Since the early 1950s, IR spectroscopy has been a routine analytical tool for lignin chemists. In the past, spectra were recorded using the so-called dispersive technique, i.e., with grating-type or prism instruments. In the last decade, Fourier transform infrared (FTIR) spectrometers have become increasingly available for routine laboratory work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abott TP, Palmer DM, Gordon SH, Bagby MO (1988) Solid state analysis of plant polymers by FTIR. J Wood Chem Technol 8: 351–357

    Article  Google Scholar 

  • Antoon MK, D’Esposito L, Koenig JL (1979) Factor analysis applied to Fourier transform infrared spectra. Appl Spectrosc 33: 351 - 357

    Article  CAS  Google Scholar 

  • Bartick EG (1985) Microscopy/infrared spectroscopy for routine sample size. Appl Spectrosc 39: 885–890

    Article  CAS  Google Scholar 

  • Beebe KR, Kowalski BR (1987) An introduction to multivariate calibration and analysis. Anal Chem 59: 1007A–1017A

    Article  CAS  Google Scholar 

  • Bell RJ (1972) Introductory Fourier transform spectroscopy. Academic Press, New York, 382 pp

    Google Scholar 

  • Berben SA, Rademacher JP, Sell LO, Easty DB (1987) Estimation of lignin in wood pulp by diffuse reflectance Fourier-transform infrared spectrometry. Tappi J 70 (11): 129–133

    CAS  Google Scholar 

  • Birkett M, Gambino M, Meyer JH, Egers D (1989) Estimation of kappa number of pulps by near-infrared spectroscopy. Tappi J 72 (9): 193–197

    CAS  Google Scholar 

  • Bracewell R (1965) The Fourier transformation and its applications. McGraw-Hill, New York, 381 pp

    Google Scholar 

  • Cameron DG, Moffatt DJ (1984) Deconvolution, derivation, and smoothing of spectra using Fourier transforms. Test Eval 76: 83

    Google Scholar 

  • Chang H-m, Sarkanen KV (1973) Species variation in lignins. Effect of species on the rate of kraft delignification. Tappi 56: 132–134

    CAS  Google Scholar 

  • Chum HL, Ratcliff, Schroeder HA, Sopher DW (1984) Electrochemistry of biomass-derived materials. Characterization, fractionation, and reductive electrolysis of ethanol-extracted explosively depressurized aspen lignin. J Wood Chem Technol 4: 505–532

    Article  CAS  Google Scholar 

  • Compton DAC, Young JR, Kollar RG, Mooney JR, Grasselli JG (1987) In: McClure GL (ed) Computerized quantitative infrared analysis. ASTM, Philadelphia, 36–57

    Chapter  Google Scholar 

  • Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19: 297–301

    Article  Google Scholar 

  • Faix O (1986). Investigations on lignin polymer models (DHP’s) by FTIR spectroscopy. Holzforschung 40: 273–280

    Article  CAS  Google Scholar 

  • Faix O (1987) Quantitative FTIR-spektroskopische Untersuchungen an Ligninen und Ligninmodellsubstanzen. Habilitation Thesis, University of Hamburg

    Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung 45 (SuppI, Sept): 21–27

    Article  CAS  Google Scholar 

  • Faix O, Beinhoff O (1988) FTIR spectra of milled wood lignins and lignin polymer models (DHPs) with enhanced resolution obtained by deconvolution. J Wood Chem Technol 8: 505–522

    Article  CAS  Google Scholar 

  • Faix O, Nemeth K (1988) Monitoring of wood photodegradation by DRIFT-spectroscopy. Holz Roh- Werkst 46: 112

    Article  Google Scholar 

  • Faix O, Patt R, Beinhoff O (1987) Grundlagen und Anwendung von FTIR-Spektroskopie bei der Herstellung und Analyse von Zellstoffen. Papier 41:657–663

    CAS  Google Scholar 

  • Faix O, Schweers W (1974) Vergleichende Untersuchungen an Polymermodellen des Lignins (DHPs) verschiedener Zusammensetzungen. 3 Mitt. IR-spektroskopische Untersuchungen. Holzforschung 28: 50–54

    Article  CAS  Google Scholar 

  • Ferraro JR, Basile LJ (1978) Fourier transform infrared: application to national problems. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 275–302

    Google Scholar 

  • Ferraro JR, Rein AJ (1985) Application of diffuse reflectance spectroscopy in the far-infrared region. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 244–282

    Google Scholar 

  • Frank IE, Feikema J, Constantine N, Kowalski BR (1984) Prediction of product quality from spectral data using the partial least squares method. J Chem Inf Comput Sci 24: 20–24

    Article  Google Scholar 

  • Fuller MP, Griffiths PR (1980) Infrared microsampling by diffuse reflectance Fourier transform spectrometry. Appl Spectrosc 34: 533–539

    Article  CAS  Google Scholar 

  • Gillette PC (1983) Factor analysis for separation of pure component spectra from mixture spectra. Anal Chem 55: 630–633

    Article  CAS  Google Scholar 

  • Gillette PC, Lando JB, Koening JL (1985) A survey of infrared spectral data processing techniques. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 1–47

    Google Scholar 

  • Graham J A, Grim WM III, Fateley WG (1985) Fourier transform infrared photoacoustic spectroscopy of condensed-phase samples, In: Ferraro JR, Basile LJ (eds) Fourier transform infrared) spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 345–392

    Google Scholar 

  • Grandmaison JL, Thibault J, Kaliaguine S, Chantal PD (1987) Fourier transform infrared spectrometry and thermogravimetry of partially converted lignocellulosic materials. Anal Chem 59: 2153–2157

    Article  CAS  Google Scholar 

  • Green DW, Reedy GT (1978) Matrix-isolation studies with Fourier transform infrared. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 1. Academic Press, New York, 1–59

    Google Scholar 

  • Griffiths PR (1975) Chemical infrared Fourier transform spectroscopy. Wiley, New York, 340 pp

    Google Scholar 

  • Griffiths PR (1983) Fourier transform infrared spectrometry. Science 222: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Griffiths PR, de Haseth JA (1986) Fourier transform infrared spectrometry. Wiley, New York, 672 pp

    Google Scholar 

  • Harbour JR, Hopper MA, Marchessault RH, Dobbin CJ, Anczurowski E (1985) Photoacoustic spectroscopy of cellulose, paper and wood. J Pulp Pap Sci 11: J42–J47

    Google Scholar 

  • Hauser M, Oelichmann J (1988) A critical comparison of solid sample preparation techniques in infrared spectroscopy. Microchim Acta (Wien), Spec. Issue, 1: 39–43

    Article  Google Scholar 

  • Hergert HL (1971) Infared spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York, 267–293

    Google Scholar 

  • Hirschfeld T (1987) In: McClure GL (ed) Computerized quantitative infrared analysis. ASTM, Philadelphia, 169–179

    Chapter  Google Scholar 

  • Horlick G (1968) Introduction to Fourier transform spectroscopy. Appl Spectrosc 22: 617–626

    Article  Google Scholar 

  • Kawamura L, Higuchi T (1964a) Comparative studies of milled wood lignins from different taxonomical origins by infrared spectroscopy. In: Grenoble Symposium 1964, Chimie et biochimie de la lignine, de la cellulose et des hemicelluloses. Les Imprimeries Reunies de Chambery, Chambery, 439–456

    Google Scholar 

  • Kawamura I, Higuchi T (1964b) Studies on the properties of lignins of plants in various taxonomical positions II. On the I.R. absorption spectra of lignins. Mokuzai Gakkaishi 10: 200–206

    CAS  Google Scholar 

  • Kawamura I, Shinoda Y, Nonomura S (1974) The comparison of relative intensities of IR absorption bands of MWL of various woods from tropical and temperate zones. Mokuzai Gakkaishi 20: 15–20

    CAS  Google Scholar 

  • Kawamura I, Shinoda Y, Ai TV, Tanada T (1977) Chemical properties of lignin of Eyrthrina wood. Mokuzai Gakkaishi 23: 400–404

    CAS  Google Scholar 

  • Koenig JL (1981) Fourier transform infrared spectroscopy of chemical systems. Acc Chem Res 15: 171–178

    Article  Google Scholar 

  • Krishnan K (1988) Characterization of semiconductor silicon using the FT-TR microsampling techniques. In: Messerschmidt RG, Harthcock MA (eds) Infrared microspectroscopy: theory and applications. Marcel Dekker, New York, 139–151

    Google Scholar 

  • Kuo MI, McClelland JF, Luo S, Chien PL, Walker RD, Hse CY (1988) Applications of infrared photoacoustic spectroscopy for wood samples. Wood Fiber Sci 20: 132–145

    CAS  Google Scholar 

  • Lai Y-Z, Sarkanen KV (1975) Structrual variation in dehydrogenation polymers of coniferyl alcohol. Cellul Chem Technol 9:239–245

    CAS  Google Scholar 

  • Mackenzie MW (1988) Advances in applied Fourier transform infrared spectroscopy. Wiley, New York, 350 pp

    Google Scholar 

  • Malhotra VM, Jasty S, Mu R (1989) FT-IR spectra of water in microporous KBr pellets and water’s desorption kinetics. Appl Spectrosc 43: 638–645

    Article  CAS  Google Scholar 

  • Michell AJ (1988a) Note on a technique for obtaining infrared spectra of treated wood surfaces. Wood Fiber Sci 20: 272–276

    CAS  Google Scholar 

  • Michell AJ (1988b) Infrared spectroscopy transformed - new applications in wood and pulping chemistry. Appita 41: 375–380

    CAS  Google Scholar 

  • Michell AJ (1988c) Usefulness of Fourier-transform infrared difference spectroscopy for studying the reactions of wood during pulping. Cellul Chem Technol 22: 105–113

    CAS  Google Scholar 

  • Michell AJ (1988d) Second derivative F.T.-I.R. spectra of celluloses I and II and related mono- and oligosaccharides. Carbohydr Res 173: 185–195

    Article  CAS  Google Scholar 

  • Michell AJ, Garland CP, Nelson PJ (1989) Diffuse-reflectance infrared Fourier transform (DRIFT) spectroscopic study of bleaching and yellowing of eucalypt cold soda pulp. J Wood Chem Technol 9: 85–103

    Article  CAS  Google Scholar 

  • Naes T, Martens H (1984) Multivariate calibration II. Chemometric methods. Trends Anal Chem 3: 266–271

    Article  CAS  Google Scholar 

  • Obst JR (1982) Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 36: 143–152

    Article  CAS  Google Scholar 

  • Obst JR, McMillan NJ, Blanchette RA, Christensen DJ, Crawford DM, Küster TA, Landucci LL, Faix O, Newman RH, Pettersen RC, Schwandt VH, Weselowsky MF (1989) Proc 5th Int Symp Wood Pulp Chem, Raleigh, NC, Poster Sessions, 289–308, Tappi press, Athanta, GA and Geological Survey of Canada, Bulletin 403 (1991): 123–146

    Google Scholar 

  • Oelichmann J, Hauser M (1988) Feststoffuntersuchungen in Infrarot-Spektroskopie. Perkin Elmer’s Applied Infrared Spectroscopy, 24, 7700 Überlingen, FRG

    Google Scholar 

  • Osborne BG, Fearn T (1986) Near infrared spectroscopy in food analysis. Langma Scientific and Wiley, New York, 200 pp

    Google Scholar 

  • Ostmeyer JG, Elder TJ, Winandy JE (1989) Spectroscopic analysis of southern pine treated with chromated copper arsenate II. Diffuse-reflectance Fourier-transform infrared spectroscopy (DRIFT). J Wood Chem Technol 9: 105–122

    Article  CAS  Google Scholar 

  • Owen NL, Thomas DW (1989) Infrared studies of “hard” and “soft” woods. Appl Spectrosc 43: 451–455

    Article  CAS  Google Scholar 

  • Painter P, Starsinic M, Coleman M (1985) Determination of functional groups in coal by Fourier transform interferometry. In: Ferraro JR, Basile LJ (eds) Fourier transform infrared spectroscopy - applications to chemical systems, Vol. 4. Academic Press, New York, 169–241

    Google Scholar 

  • Pakdel H, Grandmaison JL, Roy C (1989) Analysis of wood vacuum pyrolysis solid residues by diffuse reflectance infrared Fourier transform spectrometry. Can J Chem 67: 310–314

    Article  CAS  Google Scholar 

  • Perkins WD (1986) Fourier transform-infrared spectroscopy. Part I. Instrumentation. J Chem Educ 63: A5–A10

    Article  CAS  Google Scholar 

  • Perkins WD (1987) Fourier transform-infrared spectroscopy. Part II. Advantages of FT-IR. J Chem Educ 64. A269–A271

    Article  CAS  Google Scholar 

  • Rosencwaig A (1981) Photoacoustics and photoacoustic spectroscopy. Wiley, New York, 324 pp

    Google Scholar 

  • Salud EC, Faix O (1980) The isolation and characterization of lignins of Shorea species. Holzforschung 34:113–121

    Article  CAS  Google Scholar 

  • Sarkanen KV, Chang H-m, Ericsson B (1967a) Species variation in lignins. Conifer lignins. Tappi 50: 538–587

    Google Scholar 

  • Sarkanen KV, Chang H-m, Allan GG (1967b) Species variation in lignins. III. Hardwood lignins. Tappi 50: 587–590

    CAS  Google Scholar 

  • Sarkanen KV, Hergert HL (1971) Classification and distribution. In: Sarkanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York, 43–94

    Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Definitions and nomenclature. In: Sarakanen KV, Ludwig CH (eds) Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York, 1–18

    Google Scholar 

  • Schiering DW, Oelichmann J, Rau A (1988) Prinzipien und Anwendungen der Infrarot- Mikroskopie. Perkin Elmer’s Applied Infrared Spectroscopy, 7700 Überlingen, FRG

    Google Scholar 

  • Schultz TP, Templeton MC, McGinnis GD (1985a) Rapid determination of lignocellulose by diffuse reflectance Fourier transform infrared spectrometry. Anal Chem 57: 2867–2869

    Article  CAS  Google Scholar 

  • Schultz TP, McGinnis GD, Bertran MS (1985b) Estimation of cellulose crystallinity using Fourier transform-infrared spectroscopy dynamic thermogravimetry. J Wood Chem Technol 5: 543–557

    Article  CAS  Google Scholar 

  • Schultz TP, Glasser WG (1986) Quantitative structural analysis of lignin by diffuse reflectance Fourier transform infrared spectromety. Holzforschung 40 (Suppl): 37–44

    Article  CAS  Google Scholar 

  • Schultz TP, Nicholas DD (1987) Fourier transform infrared spectrometry. Detection of incipient brown rot decay in wood. Int Analyst 41: 35–39

    Google Scholar 

  • Sjöström M, Wold, S, Lindberg W, Persson J-A, Martens H (1983) A multivariate calibration problem in analytical chemistry solved by partial least-squares models in latent variables. Anal Chim Acta 150: 61–70

    Article  Google Scholar 

  • Sommer AJ, Lang PL, Miller BS, Katon JE (1988) Application of molecular microspectroscopy to paper chemistry. Prac Spectrosc 6 (Infrared Microspectrosc): 245–258

    CAS  Google Scholar 

  • Sweeney KM (1989) FTIR microscopy of pulp and paper samples. Tappi J 72 (2): 171–174

    CAS  Google Scholar 

  • Wetzel DL (1983) Near-infrared reflectance analysis. Anal Chem 55: 1165A–1176A

    Article  CAS  Google Scholar 

  • Williams P, Norris K (1987) Near-infrared technology in the agricultural and food industries. Am Assoc of Cereal Chemists, St. Paul, MN, 330 pp

    Google Scholar 

  • Yang PW, Mantsch HH, Baudais F (1986) A critical evaluation of three types of diffuse reflectance infrared accessories. Appl Spectrosc 40: 974–978

    Article  CAS  Google Scholar 

  • Yasuda T, Sakakibara A (1981) Hydrogenolysis of protolignin in compression wood. V. Isolation of two trimeric compounds with lactone ring. Holzforschung 35: 183–187

    Article  CAS  Google Scholar 

  • Yeboah SA, Wang S-H, Griffiths PR (1984) Effect of pressure on diffuse reflectance infrared spectra of compressed powders. Appl Spectrosc 38: 259–264

    Article  CAS  Google Scholar 

  • Zavarin E, Nguyen C, Romero E (1982) Preparation of enzymatically liberated lignin from naturally brown-rotted wood. J Wood Chem Technol 2: 343–37

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faix, O. (1992). Fourier Transform Infrared Spectroscopy. In: Lin, S.Y., Dence, C.W. (eds) Methods in Lignin Chemistry. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74065-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74065-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74067-1

  • Online ISBN: 978-3-642-74065-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics