Skip to main content

Functional Significance of the Basic Cerebellar Circuit in Motor Coordination

  • Conference paper
Cerebellar Functions

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Probably the most striking example of uniformity in the neuronal fabric of the brain is that present in the cerebellar cortex. Its connectivity and neuronal circuitry have an almost crystal-like structural organization. An example of the former is the precise distribution of the synaptic inputs onto the soma and dendrites of the cerebellar cortical neurons at the most superficial stratum, the molecular layer (cf. Palay and Chan-Palay 1974). At the neuronal circuit level the parallel fibers course in parallel to the cerebellar surface, the basket cell axons run orthogonally with respect to the direction of the parallel fibers, and all dendrites in the molecular layer run radially towards the surface of the cortex. This organization gives the cerebellar cortex a tridimensional matrix structure. As observed from the surface, the x axis is the direction of the parallel fibers, the y axis the direction of the basket cell axons, and the z axis the direction of the Purkinje cell dendrites (Ramón y Cajal 1911). In addition, since the descriptions by Ramón y Cajal (1888) it has been well known that the Purkinje cell dendrites are close to isoplanar and that the dendritic plane is oriented orthogonally with respect to the parallel fibers (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus JS (1958) A theory of cerebellar function. Math Biosci 10: 25–61

    Article  Google Scholar 

  • Armstrong DM (1974) Functional significance of the inferior olive. Physiol Rev 54: 358–417

    PubMed  CAS  Google Scholar 

  • Barmack NH (1979) Immediate and sustained influence of visual olivocerebellar activity on eye movement. In: Talbot RE, Humphrey DR (eds) Posture and movement: perspective for integration sensory and motor research on the mammalian nervous system. Raven Press, New York

    Google Scholar 

  • Bell MM, Kawasaki R (1972) Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol 35: 155–169

    PubMed  CAS  Google Scholar 

  • Benedetti F, Montarolo PG, Rabacchi S, Savio, T (1983a) Long-term functional changes in the Purkinje cell to climbing fibre deprivation. Neurosci lett Suppl (in press)

    Google Scholar 

  • Benedetti F, Montarolo PG, Strata P, Tempia F (1983b) Inferior olive inactivation decreased the excitability of the intracerebellar and lateral vestibular nuclei in the rat. J Physiol 340: 195–208

    PubMed  CAS  Google Scholar 

  • Bloedel JR, Courville J (1981) A review of cerebellar afferent systems. In: Brooks VB (ed) Handbook of physiology, vol H. Motor control. Williams & Wilkins, Baltimore, pp 735–830

    Google Scholar 

  • Bloedel JR, Ebner TJ, Yu QX (1983) Increased responsiveness of Purkinje cells associated with climbing fiber inputs to neighboring neurons. J Neurophysiol 50: 220–239

    PubMed  CAS  Google Scholar 

  • Bloedel JR, Roberts WJ (1971) Action of climbing fibers in cerebellar cortex of the cat. J Neurophysiol 34: 17–31

    PubMed  CAS  Google Scholar 

  • Bower J, Llinas R (1983) Simultaneous sampling of the responses of multiple, closely adacent, Purkinje cells responding to climbing fiber activation. Soc Neurosci Abstr 9: 607

    Google Scholar 

  • Bower JM, Woolston DC, Gibson JM (1980) Congruence of spatial patterns of receptive field projections to Purkinje cell and granule cell layers in the cerebellar cortex of the rat. Soc Neurosci Abstr 6: 511

    Google Scholar 

  • Braitenberg V, Atwood RP (1958) Morphological observations in the cerebellar cortex. J Comp Neurol 109: 1–34

    Article  PubMed  CAS  Google Scholar 

  • Brand S, Dahl A-L, Mugnaini E (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and elctron microscopic study. Exp Brain Res 26: 39–58

    PubMed  CAS  Google Scholar 

  • Brodai A, Hoivik B (1964) Site and termination of primary vestibulo cerebellar fibers in the cat: An experimental study with silver impregnation methods. Arch Ital Biol 102: 1–21

    Google Scholar 

  • Bruggencate G ten, Teichmann R, Weller E (1972) Neuronal activity in the lateral vestibular nucleus of the cat. III. Inhibitory actions of cerebellar Purkinje cells evoked via mossy and climbing fibre afferents. Pflueger’s Arch 337: 147–162

    Article  Google Scholar 

  • Crill WE (1970) Unitary multiple-spiked responses in cat inferior olive nucleus. J Neurophysiol 33: 199–209

    PubMed  CAS  Google Scholar 

  • Desclin JC, Escubi J (1974) Effects of 3-acetylpyridine on the central nervous system of the rat, as demonstrated by silver methods. Brain Res 77: 349–364

    Article  PubMed  CAS  Google Scholar 

  • Dow RS (1939) Cerebellar action potentials in response to stimulation of various afferent connections. J Neurophysiol 2: 543–555

    Google Scholar 

  • Ebner TJ, Bloedel JR (1981) Temporal patterning in simple spike discharge of Purkinje cells and its relationship to climbing fiber activity. J Neurophysiol 45: 933–947

    PubMed  CAS  Google Scholar 

  • Eccles JC, Lliniis R, Sasaki K (1966a) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182: 268–296

    PubMed  CAS  Google Scholar 

  • Eccles JC, Llinâs R, Sasaki K (1966b) Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res 1: 17–39

    PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Faber D, Murphy J (1969) Axonal branching in the climbing fiber pathway to the cerebellum. Brain Res 15: 262–267

    Article  PubMed  CAS  Google Scholar 

  • Hess R, Simpson JI (1978) Visual and somatosensory messages to the rabbit’s cerebellar flocculus. Neurosci Lett Suppl 1: 146

    Google Scholar 

  • Ito M, Simpson JI (1971) Discharges in Purkinje cell axons during climbing fiber activation. Brain Res 31: 215–219

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Orlov I, Shimoyama I (1978) Reduction of the cerebellar stimulus effect on rat Deiters’ neurones after chemical destruction of the inferior olive. Exp Brain Res 33: 143–145

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Nisimaru N, Shibuki K (1979) Destruction of inferior olive induces rapid depression in synaptic action of cerebellar Purkinje cells. Nature (London) 227: 568–569

    Article  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324: 113–134

    PubMed  CAS  Google Scholar 

  • King JS, Andrezik JA, Falls WM, Martin GF (1976) Synaptic organization of cerebello-olivary circuit. Exp Brain Res 26: 159–170

    Article  PubMed  CAS  Google Scholar 

  • Leonard C, Simpson JI (1982) Effects of suspending climbing fiber activity on the discharge patterns of floccular Purkinje cells. Soc Neurosci Abstr. 8: 830

    Google Scholar 

  • Llinâs R (1969a) Functional aspects of interneuronal evolution in the cerebellar cortex. In: Brazier MAB (ed) The interneuron, UCLA Forum in Med Sci Vol XI. Univ Cal Press, Los Angeles, pp 329–347

    Google Scholar 

  • Llinâs R (1969b) Editor, Neurobiology of cerebellar evolution and development. Am Med Assoc (Chicago )

    Google Scholar 

  • Llinàs R (1970) Neuronal operations in cerebellar transactions. In: Schmitt FO (ed), The neurosciences: second study program, Rockefeller Univ Press, New York, pp 409–426

    Google Scholar 

  • Llinâs R (1974) 18th bowditch lecture: motor aspects of cerebellar control. Physiologist 17: 1946

    Google Scholar 

  • Llinâs R (1979) The role of calcium in neuronal function. In: Schmitt FO, Worden FG (eds) The neurosciences: fourth study program, MIT Press, Cambridge, pp 555–571

    Google Scholar 

  • Llinâs R, Simpson JI (1981) Cerebellar control of movement. In: Towe A, Luschei E (eds) Handbook of behavioral neurobiology, Vol II. Plenum Press, New York, pp 171–195

    Google Scholar 

  • Llinas R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305: 171–195

    PubMed  CAS  Google Scholar 

  • Llinâs R, Sugimori M (1982) Functional significance of the climbing fiber input to Purkinje cells: An in vitro study in mammalian cerebellar slices. Exp Brain Res Supp1 6: 402–411

    Google Scholar 

  • Llinas R, Volkind R (1973) The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res 18: 69–87

    Article  PubMed  CAS  Google Scholar 

  • Llinâs R, Walton K (1977) Significance of the olivo-cerebellar system in compensation of ocular position following unilateral labyrinthectomy. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Elsevier/North Holland Biomedical Press, Amsterdam, pp 399–408

    Google Scholar 

  • Llinâs R, Walton.K (1979) The role of the olivo-cerebellar system in motor learning. In: Brazier MAB (ed) Brain mechanisms in memory and learning. Raven Press, New York, pp 17–36

    Google Scholar 

  • Llinâs R, Yarom Y (1980) Electrophysiological properties of mammalian inferior olivary cells in vitro. In: Courville J, Montigny de C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven Press New York, pp 379–388

    Google Scholar 

  • Llinâs R, Yarom Y (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 315: 569–584

    PubMed  Google Scholar 

  • Llinâs R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37: 560–571

    PubMed  Google Scholar 

  • Llinâs R, Walton K, Hillman DE, Sotelo C (1975) Inferior olive: Its role in motor learning. Science 190: 1230–1231

    Article  PubMed  Google Scholar 

  • Maekawa K, Takeda T (1975) Mossy fiber responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway. Brain Res 98: 590–595

    Article  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202: 437–470

    PubMed  CAS  Google Scholar 

  • Marshall KC, Hendelnan WJ (1982) Morphophysiological studies of a culture model of the cerebellum. Exp Brain Res Supp1 6: 69–74

    Google Scholar 

  • Moatomed F (1966) Cell frequencies in the human inferior nuclear complex. J Comp Neurol 128: 109–116

    Article  Google Scholar 

  • Montarolo PG, Raschi F, Strata P (1981) Are the climbing fibres essential for the Purkinje cell inhibitory action? Exp Brain Res 42: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Montigny de C, Lamarre C 1973 ) Rhythmic activity induced by harmaline in the olivo-cerebellobulbar system of the cat. Brain Res 53: 81–95

    Article  PubMed  Google Scholar 

  • Mugnaini E (1972) The histology and cytology of the cerebellar cortex: In: Larsell O, Jahnsen J (eds), The comparative anatomy and histology of the cerebellum: human cerebellum, cerebellar connections and cerebellar cortex, Univ Minnesota Press, Minneapolis, pp 201–262

    Google Scholar 

  • Oscarsson O (1980) Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, Montigny de C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology, Raven Press New york, pp 279–289

    Google Scholar 

  • Oscarsson O, Sjölund B (1977a) The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res 28: 469–486

    PubMed  CAS  Google Scholar 

  • Oscarsson O, Sjölund B (1977b) The ventral spino-olivocerebellar system in the cat. III. Functional characteristics of the five paths. Exp Brain Res 28: 505–520

    PubMed  CAS  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer Berlin Heidelberg New York

    Google Scholar 

  • Palkovits M, Magyar P, Szentagothai J (1971) Quantitative histological analysis of the cerebellar cortex in the cat. II. Structural organization of the molecular layer. Brain Res 34: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Pellionisz A, Llinas R (1980) Tensorial approach to the geometry of brain function: Cerebellar coordination via metric tensor. Neuroscience 5: 1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Pellionisz A, Llinas R (1982) Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscience 7: 2949–2970

    Article  PubMed  CAS  Google Scholar 

  • Precht W (1978) Neuronal operations in the vestibular system. Springer Berlin Heidelberg New York

    Google Scholar 

  • Precht W, Llinas R (1969) Comparative aspects of the vestibular input to the cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. Am Med Assoc (Chicago) pp 677–702

    Google Scholar 

  • Ram6n y Cajal S (1888) Estructura de los centros nerviosos de las ayes. Rev Trimest Histol Norm Patol 1: 305–315

    Google Scholar 

  • Ramtin y Cajal S (1911) Histologie du systeme nerveux de l’homme et des vertebres, vols I and I I. Mgloine, Paris

    Google Scholar 

  • Schaeffer KP, Meyer DL (1973) Compensatory mechanisms following labyrinthine lesions in the guinea-pig. A simple model of learning. In: Zippel HZ (ed) Memory and transfer of information. Plenum Press New York, pp 203–232

    Google Scholar 

  • Shambes GM, Gibson JM, Welker W (1978) Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol 15: 94–140

    Article  PubMed  CAS  Google Scholar 

  • Shinoda Y, Yoshida K (1975) Neural pathways form the vestibular labyrinths to the flocculus in the cat. Exp Brain Res 22: 97–111

    Article  PubMed  CAS  Google Scholar 

  • Simpson JI, Precht W, Llinäs R (1974) Sensory separation in climbing and mossy fiber inputs to cat vestibulocerebellum. Pflueger’s Arch 351: 183–193

    Article  CAS  Google Scholar 

  • Sotelo C, Llinas R, Baker R (1974) Structural study of the inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol 37: 541–559

    PubMed  CAS  Google Scholar 

  • Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. Am Med Assoc (Chicago) pp 493–514

    Google Scholar 

  • Walton K (1980) Vestibular compensation in the rat. A model for motor learning. Doctoral Diss, New York Univ Med Ctr, NY

    Google Scholar 

  • Wilson VJ, Maeda M, Franck JI (1975) Input from neck afferents to the cat flocculus. Brain Res 89: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Wilson WC, Magoun HW (1945) The functional significance of the inferior olive in the cat. J Comp Neurol 83: 69–77

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Llinás, R. (1984). Functional Significance of the Basic Cerebellar Circuit in Motor Coordination. In: Bloedel, J.R., Dichgans, J., Precht, W. (eds) Cerebellar Functions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69980-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69980-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69982-5

  • Online ISBN: 978-3-642-69980-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics