Skip to main content
  • 368 Accesses

Abstract

Since 1994 the European Union (EU) has been pursuing a strategy aimed at enabling Europe to the development of a Global Navigation Satellite System (GNSS). In early 1999 the EU proposed a strategy with the goal to design, implement and operate its own constellation of navigation satellites within a program by the name of Galileo (in honor of Galileo Galilei, Feb. 151564 – Jan. 8.1642, Italian astronomer and physicist, founder of experimental physics and astronomy). On March 29, 1999, the EU Transport Ministers endorsed the proposed Galileo program at a meeting in Brussels. Major reasons for Europe’s decision to build its own navigation system are:

  • Current dependence on navigation systems of GPS and GLONASS that are run by military organizations without any means of international control.

  • Europe wants its own civil-controlled navigation system for political and security reasons. To be in a position to compete for a fair share in a large global navigation and communication market. The commitment to build and operate the Galileo navigation system represents a strategic, economic, and technological venture for Europe.

  • The requirement for safety-critical application services. Galileo should be able to provide a service with a certifiable performance level (which neither independent satellite navigation system can presently do) to support multimodal traffic, sufficient in particular in civil aviation, marine navigation and road transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GNSS-1 (Global Navigation Satellite System-1). The first generation GNSS-1 comprises the following elements: GPS, GLONASS and their augmentation systems [WAAS (Wide Area Augmentation System) of the US, EGNOS (European Geostationary Navigation Overlay System) or Europe, and MSAS (Multi-Transport Satellite Augmentation System) of Japan]. The three segments of GNSS-1 are expected to be operational by 2003.

    Google Scholar 

  2. GNSS-2 (Global Navigation Satellite System-2). The second generation GNSS comprises all elements of GNSS-1 plus Galileo. GNSS-2 is planned to be operational by 2008.

    Google Scholar 

  3. Information provided by Hans L. Trautenberg of Astrium GmbH, Munich (viewgraph package), representing the ESA baseline concept as of Feb. 2001

    Google Scholar 

  4. G. Salgado, S. Abbondanza, R. Blondel, S. Lannelongue, “A New Model — Constellation Availability, ” Galileo’s World, Spring 2001, pp. 30–35

    Google Scholar 

  5. G. K. Crosby, W. S. Ely, K. W. McPherson, et al., “A Ground-based Regional Augmentation System (GRAS) — The Australian Proposal, ” ION-2000, Salt Lake City, UT, Sept. 19–22, 2000, pp. 713–721

    Google Scholar 

  6. R. Loh, V. Wullschleger, B. Elrod, M. Lage, F. Haas, “The US Wide-Area Augmentation System (WAAS), ” Navigation ION, Vol. 42, No. 3, Fall 1995, pp, 435–465

    Google Scholar 

  7. G. V. Kinal, O. Razumovsky, “Performance of the Inmarsat-3 Navigation Augmentation Payloads, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 1285–1294

    Google Scholar 

  8. T. Walter, A. Hansen, J. Blanch, et al, “Robust Detection of Ionospheric Irregularities, ” ION-2000, Salt Lake City, UT, Sept. 19–22, 2000, pp. 209–218

    Google Scholar 

  9. J. Ceva et al., “Incorporation of Orbital Dynamics to Improve Wide-Area Differential GPS, ” Navigation ION, Vol. 44, No. 2, Summer 1997, pp. 171–213

    Google Scholar 

  10. http://gps.faa.gov/ProgramsAVAAS/waas.htm

  11. K. Gromov, D. Akos, S. Pullen, P. Enge, B. Parkinson, “GIDL: Generalized Interference Detection and Localization System, ” ION 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 447–457

    Google Scholar 

  12. A. Manz, K. Shallberg, Peter Shloss, “Improving WAAS Receiver Radio Frequency Interference Rejection, ” ION 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 471–479

    Google Scholar 

  13. E. Copros, J. Spiller, T. Underwood, Ch. Vialet, “An Improved Space Segment for the End-State WAAS and EG-NOS Final Operational Capability, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp.1119–1125

    Google Scholar 

  14. S. Loddo, D. Flament, J. Benedicto, P. Michel, “EGNOS, the European Regional Augmentation to GPS and GLONASS, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1143–1150

    Google Scholar 

  15. J. Beale, P. Campagne, “European Commission Actions to Consolidate The European Contribution to a GNSS, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1467–1471

    Google Scholar 

  16. http://www.esa.int/EGNOS/

  17. L Gauthier, P. Michel, J. Ventura-Traveset, J. Benedicto, “EGNOS: The First Step in Europe’s Contribution to the Global Navigation Satellite System, ” ESA Bulletin, No. 105, Feb. 2001, pp. 35–42

    Google Scholar 

  18. J. Nieto, M. A. Molina, M. L. de Mateo, R. Roman, L. Andrada, “Assessment of EGNOS System and Performance: Early Test System, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 1345–1354

    Google Scholar 

  19. A. Cruz, J. Cosmen, J. M. Legido, J. Caro, H. Secretan, N. Suard, “EGNOS System Test Bed: Achievements and Ongoing Upgrades, ” ION-200G, Salt Lake City, UT, Sept. 19–21, 2000, pp. 199–208

    Google Scholar 

  20. M. Kawai, H. Nakao, K. Wakasa, “GPS/SBAS Receiver Flight Test in Japan, ” ION GPS 2000, Sept. 19–22, 2000, Slat Lake City, UT, pp. 266–276

    Google Scholar 

  21. “Understanding Signals from GLONASS Navigation Satellites, ” International Journal of Satellite Communications’, Vol. 7, 11–12, 1989, pp. 11–22

    Google Scholar 

  22. “Russians Launch Trio of GLONASS Satellites, ” GPS World, January 1995, p. 15

    Google Scholar 

  23. N. Yefimova, “Russia’s GLONASS System Awaits Upgrade, ” Space News, Aug. 13, 2001, p. 24

    Google Scholar 

  24. N. L. Johnson, “GLONASS Spacecraft, ” GPS World, Nov. 1994, pp. 51–58

    Google Scholar 

  25. http://mx.iki.rssi.ru/SFCSIC/english.htm

  26. Y. Gouzhva, I. Koudryavtsev, V Korniyenko, I. Pushkina, “GLONASS Receivers: An Outline, ” GPS World, January 1994, pp. 30–36

    Google Scholar 

  27. P. N. Misra, E. T. Bayliss, R. R. LaFrey, M. M. Pratt, R. A. Hogaboom, R. Muchnik, “GLONASS Performance in 1992: A Review, ” GPS World, May 1993, pp. 28–38

    Google Scholar 

  28. P. N. Misra, et al., “Integrated use of GPS and GLONASS: Transformation between WGS 84 and PZ-90, ” Proceedings of ION GPS-96, The Institute of Navigation, pp. 307–314, 1996. (http://satnav.atc.ll.mit.edu/papers/PZ90-WGS84/PZ90-WGS84.html)

    Google Scholar 

  29. Courtesy of A. Selivanov, ISDE and B. Zhukov, IKI, Moscow

    Google Scholar 

  30. B. W. Parkinson, J. J. Spilker Jr., P. Axelrad, P. Enge, “Global Positioning System: Theory and Applications, Vol. I and II, “ AIAA, 1996

    Book  Google Scholar 

  31. “The NAVSTAR GPS System, ” AGARD Lecture Series No. 161, ISBN 92–835-04771, Sept. 1988

    Google Scholar 

  32. “Understanding Signals from GLONASS Navigation Satellites, ” International Journal of Satellite Communications, Vol. 7 11–12, 1989, pp.11–22

    Google Scholar 

  33. “Navstar, ” Jane’s Spaceflight Directory 1988–89, 4th Edition, pp. 404–405

    Google Scholar 

  34. B. W Parkinson was the first director of JPO, located at SAMSO of the USAF in El Segundo, CA

    Google Scholar 

  35. M. Shaw, P. Levin, J. Martel, “The DoD: Stewards of a Global Information Resource, the Navstar Global Positioning System, ” Proceedings of the IEEE, Vol. 87, No. 1, Jan. 1999, pp.; 16–23

    Google Scholar 

  36. Note: The block-I satellites were actually preceded by the NTS (Navigation Technology Satellite) experimental series. NTS-1 was launched on July 14, 1974 (the first satellite to fly atomic clocks: two rubidium oscillators) NTS-2 was launched June 23, 1977 (first cesium clock in space).

    Google Scholar 

  37. L. F. Wiederholt, E. D. Kaplan, “Understanding GPS, Principles and Applications, ” Ärtech House Inc., Boston, 1996, Chapter 3

    Google Scholar 

  38. S/C drawing courtesy of J. Keating, Lockheed Martin Astro Space, Valley Forge, PA

    Google Scholar 

  39. T. Hartman, L. R. Boyd, D. Koster, J. A. Rajan, J. Harvey, “Modernizing the GPS Block IIR Spacecraft, ” ION GPS 2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2115–2121

    Google Scholar 

  40. K. Sandhoo, D. Turner, M. Shaw, “Modernization of the Global Positioning System, ” ION-2000, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2175–2183

    Google Scholar 

  41. S. C. Fisher, K. Ghassemi, “GPS IIF — The Next Generation, ” Proceedings of the IEEE, Vol. 87, No. 1, Jan. 1999, pp. 24–47

    Article  Google Scholar 

  42. K. Ghassemi, S. C. Fisher, “Performance Projections of GPS IIF, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 407–415

    Google Scholar 

  43. Ch. Shank, J. W. Lavrakas, “Inside GPS: The Master Control Station, ” GPS World, September 1994, pp. 46–54

    Google Scholar 

  44. F. H. Bauer, K. Hartman, J P. How, et al., “Enabling Spacecraft Formation Flying through Spaceborne GPS and Enhanced Automation Technologies, ” Proceedings of the ION-GPS Conference, Nashville TN, Sept. 15, 1999

    Google Scholar 

  45. “GPS — the Next Generation, ” GPS World, Nov. Dec. 1991, pp. 12–16

    Google Scholar 

  46. Glen Gibbons, “What in the World!?!” GPS WORLD, April 1991, p. 21–24

    Google Scholar 

  47. B. Tryggö, R. Bäckström, “Threading the Needle: Differential GPS on the Baltic Sea, ” in GPS World Sept. 1991, pp. 22–26

    Google Scholar 

  48. “GPS is Newest Aid in Earthquake Forecasting, ” Space News, March 18–24 1991, pp. 22

    Google Scholar 

  49. http://milhouse.jpl.nasa.gov/

  50. “Smart Policy: Make Best GPS Data Available to All, ” Space News, April 1–7 1991, pp. 15

    Google Scholar 

  51. http://gauss.gge.unb.ca/grads/sunil/sgps.htm

  52. E. G. Lightsey, “Spacecraft Attitude Control Using GPS Carrier Phase, ” Chapter 16 of Global Positioning System: Theory and Applications, Vol. 2, ’ ALAA Volume 164

    Google Scholar 

  53. C. E. Cohen, “Attitude Determination, ” Chapter 19 of Global Positioning System: Theory and Applications, Vol. 2, ’ AIAA Volume 164

    Google Scholar 

  54. J. K. Brock, R. Fuller, et al., “GPS Attitude Determination and Navigation Flight Experiment, ” Proceedings of ION GPS-95, Sept. 12–15, 1995, Palm Springs, CA, Sept. 1995, pp. 545–554

    Google Scholar 

  55. W. Johnson, “Attitude Adjustment, GPS Innovation keeps Satellites Oriented, ” Satellite Communications, June 1995, pp. 19–21

    Google Scholar 

  56. R. Fuller, D. Hong, S. Hur-Diaz, J. Rodden, M. Tse, “GPS Tensor An Attitude and Orbit Determination System for Space, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, Kansas City, MO, pp. 299–311

    Google Scholar 

  57. F. Bauer, E. Lightsey, et al., “Pre-Flight Testing of the SPARTAN GADACS Experiment, ” Proceedings of ION GPS-94, Salt Lake City, pp. 1233–1241

    Google Scholar 

  58. F. H. Bauer, J. R. O’Donnell, “Space-Based GPS 1996 Mission Overview, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City MO, pp. 1293–1302

    Google Scholar 

  59. M. E. Lisano, J. R. Carpenter, S. Gomez, “Navigation, Attitude Determination, and Multipath Analysis Results from the STS-77 GPS Attitude and Navigation Experiment (GANE), ” Navigation, Vol. 46, No. 3, Fall 1999, pp. 175–192

    Google Scholar 

  60. R. C. Hart, K. R. Hartman, A. C. Long, T. Lee, D. H. Oza, “GPS Enhanced Orbit Determination Experiment (GEODE) on the SSTI Lewis Spacecraft, ” Proceedings of ION GPS-96, Sept. 17–20, 96, pp. 1303–1312

    Google Scholar 

  61. J. R. O’Donnell, J. D. McCullough, E. G. Lightsey, R. G. Schnurr, L. Jackson, “Testing of GPS-Based Attitude Control Systems, ” Proceedings of ION GPS-96, Sept. 17–20, 1996, pp. 1063–1072

    Google Scholar 

  62. E. G. Lightsey, G. C. Blackburn, J. E. Simpson, “Going Up: A GPS Receiver Adapts to Space, ” GPS World, Sept. 2000, pp. 30–34

    Google Scholar 

  63. S. F. Gomez, “Attitude Determination and Attitude Dilution of Precision (ADOP) Results for International Space Station Global Positioning System (GPS) Receiver, ” Proceedings of ION, Sept. 19–22, 2000, pp. 1995–2002

    Google Scholar 

  64. J. Simpson, C. Campbell, E. G. Lightsey, L. Jackson, “Testing Results of the X-38 Crew Return Vehicle GPS Receiver, ” Proceedings of ION, Sept. 19–22, 2000, Salt Lake City, UT, pp. 2038–2046

    Google Scholar 

  65. “International GPS Services for Geodynamics, ” 1994 Annual Report, September 1, 1995, IGS Central Bureau, edited by J. F. Zumberge, R. Liu, and R. E. Neilan

    Google Scholar 

  66. G. Beutler, E. Brockmann, “Proceedings of the International GPS Service for Geodynamics (IGS) Workshop, ” March 25–26, 1993, Astronomical Institute, University of Bern

    Google Scholar 

  67. R. E. Neilan, J. F. Zumberge, G. Beutler, J. Kouba, “The International GPS Service: A Global Resource for GPS Applications and Research, ” Proceedings of ION GPS-97, Sept. 16–19, 1997, pp. 883–889

    Google Scholar 

  68. CIGNET Report, CSTG Bulletin No. 11, Title: New Satellite Missions for Solid Earth Studies, June 1989, pp. 235–256

    Google Scholar 

  69. RK. Enge, R.M. Kalafus, M.E Ruane, “Differential Operation of the Global Positioning System, ” IEEE Communications Magazine, July 1988, Vol. 26, No.7, pp. 48–59

    Google Scholar 

  70. B. McGarigle, “Top 40 Hydrography: Surveying with FM-based DGPS, ” GPS World April 1993 pp. 37–40

    Google Scholar 

  71. “California-Based Firms Offer Highly Accurate GPS Services, ” Space News, Nov. 29-December 5, 1993, p. 7

    Google Scholar 

  72. R. J. Danchik, “An Overview of Transit Development, ” Johns Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 18–26

    Google Scholar 

  73. W. H. Guier, G. C. Weiffenbach, “Genesis of Satellite Navigation, ” Johns Hopkins APL Technical Digest, Vol. 18, No. 2, 1997, pp. 178–181

    Google Scholar 

  74. Note: The very first Transit satellites transmitted signals at four frequencies: 54, 162, 216, and 324 MHz. The signals provided experimental data to evaluate ionospheric effects as a function of frequency. The final design is based on a two-frequency method for correcting ionospheric error.

    Google Scholar 

  75. J. Dassoulas, “The TRIAD Spacecraft, ” Johns Hopkins APL Technical Digest, Vol. 12, No. 2, pp. 2–13, June 1973

    Google Scholar 

  76. W. L. Ebert, S. J. Kowal, R. F. Sloan, “Operational NOVA Spacecraft Teflon Pulsed Plasma Thruster System, ” AIAA-89–2497, AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference, Monterey, CA, July 10–12, 1989

    Google Scholar 

  77. Y. Brill, et al., “The Flight Application of a Pulsed Plasma Microthruster: the NOVA Satellite, ” AIAA-82–1956, 16th International Electric Propulsion Conference, Nov. 1982

    Google Scholar 

  78. G. C. Kennedy, M. J. Crawford, “Innovations Derived from the Transit Program, ” Johns Hopkins APL Technical Digest, Volume 19, No. 1, 1998, pp. 27–35

    Google Scholar 

  79. A. J. Tucker, “Computerized Ionospheric Tomography, ” John Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 66–71

    Google Scholar 

  80. L. J. Rueger, “Development of Receivers to Characterize Transit Time and Frequency Signals, John Hopkins APL Technical Digest, Vol. 19, No. 1, 1998, pp. 53–59

    Google Scholar 

  81. See “Orbital Analysis” (Chapter 6.4, pp. 205 – 212) in ‘The Interdisciplinary Role of Space Geodesy, ’ Springer Verlag, 1989,

    Google Scholar 

  82. “The Precise Range and Range Rate Equipment PRARE: Status Report on System Development, Preparations for ERS-1 and Future Plans, ” Submitted by F. Flechtner, K. Kaniuth, Ch. Reigber, H. Wilmes of DGFI, Second International Symposium on Precise Positioning with the Global Positioning System (GPS ’90), Sept. ’90, Ottawa

    Google Scholar 

  83. P. Hartl, C. Reigber “Das PRARE-System der ERS-1 Mission, ” Die Geowissenschaften, 9. Jahrgang, Heft 4–5, April-Mai 1991, pp. 156–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, H.J. (2002). Satellite Radionavigation Systems. In: Observation of the Earth and Its Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56294-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56294-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62688-3

  • Online ISBN: 978-3-642-56294-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics