Skip to main content

A Hamiltonian Particle-Mesh Method for the Rotating Shallow-Water Equations

  • Conference paper
Meshfree Methods for Partial Differential Equations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 26))

Abstract

A new particle-mesh method is proposed for the rotating shallow-water equations. The spatially truncated equations are Hamiltonian and satisfy a Kelvin circulation theorem. The generation of non-smooth components in the layer-depth is avoided by applying a smoothing operator similar to what has recently been discussed in the context of α-Euler models.

Partially supported by GMD, Boon.

Supported by European Commission funding for the Research Training Network “Mechanics and Symmetry in Europe”.

Partially supported by EPSRC Grant GR/R09565/01 and by European Commission funding for the Research Training Network “Mechanics and Symmetry in Europe”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978.

    Google Scholar 

  2. C. de Boor, A practical guide to splines, Springer-Verlag, 1978.

    Google Scholar 

  3. J. Brackbill & H. Ruppel, Flip: a method for adaptively zoned particle in cell calculations of fluid flows in two dimensions, J. Comput. Phys. 65, 1986, 314–343.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.G. Dritschel, L.M. Polvani, & A.R. Mohebalhojeh, The contour-advective semi-Lagrangian algorithm for the shallow water equations, Mon. Weather Rev. 127, 1999, 1551–1565.

    Article  Google Scholar 

  5. D.R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Springer-Ver lag, New York, 1999.

    Google Scholar 

  6. J.E. Frank & S. Reich, Conservation properties of smoothed particle hydrodynamics applied to the shallow water equations, submitted.

    Google Scholar 

  7. Ch. Gauger, P. Leinen, & H. Yserentant, The finite mass method, SIAM  J. Numer. Anal. 37, 1768–1799, 2000.

    MathSciNet  MATH  Google Scholar 

  8. F.H. Harlow, The particle-in-cell computing methods for fluid dynamics, Methods Comput. Phys. 3, 1964, 319–343.

    Google Scholar 

  9. R. W. Hockney & J. W. Eastwood, Computer Simulation Using Particles, Adam Hilger, Bristol, New York, 1988.

    Book  MATH  Google Scholar 

  10. D. D. Holm, Fluctuation efects on 3D Lagrangian mean and Eulerian mean fluid motion, Physica D 133, 1999, 215–269.

    Article  MathSciNet  MATH  Google Scholar 

  11. R.I. McLachlan, On the numerical integration of ODEs by symmetric composition methods, SIAM  J. Sci. Comput. 16, 1995, 151–168.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. R. Mohebalhojeh & D. G. Dritschel, On the representation of gravity waves in numerical models of the shallow-water equations, Q. J. R. Meteorol. Soc. 126, 2000, 669–688.

    Article  Google Scholar 

  13. J. J. Monaghan, On the problem of penetration in particle methods, J. Comput. Phys. 82, 1989, 1–15.

    Article  MATH  Google Scholar 

  14. J. J. Monaghan, Smoothed particle hydrodynamics, Ann. Rev. Astron. Astrophys. 30 (1992), 543–574.

    Article  Google Scholar 

  15. R. Salmon, Practical use of Hamilton’s principle, J. Fluid Mech. 132, 431–444, 1983.

    Article  MATH  Google Scholar 

  16. R. Salmon, Lectures on Geophysical Fluid Dynamics, Oxford University Press, Oxford, 1999.

    Google Scholar 

  17. J.M. Sanz-Serna & M.P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.

    MATH  Google Scholar 

  18. H. Yserentant, A new class of particle methods., Numer. Math. 76, 1997, 87–109.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frank, J., Gottwald, G., Reich, S. (2003). A Hamiltonian Particle-Mesh Method for the Rotating Shallow-Water Equations. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56103-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56103-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43891-5

  • Online ISBN: 978-3-642-56103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics