Skip to main content

Performance of Dense Eigensolvers on BlueGene/Q

  • Conference paper
  • First Online:
Book cover Parallel Processing and Applied Mathematics (PPAM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8384))

Abstract

Many scientific applications require the computation of about 10–30 % of the eigenvalues and eigenvectors of large dense symmetric or complex hermitian matrices. In this paper we will present performance evaluation results of the eigensolvers of the three libraries Elemental, ELPA, and ScaLAPACK on the BlueGene/Q architecture. All libraries include solvers for the computation of only a part of the spectrum. The most time-consuming part of the eigensolver is the reduction of the full eigenproblem to a tridiagonal one. Whereas Elemental and ScaLAPACK only offer routines to directly reduce the full matrix to a tridiagonal one, which only allows the use of BLAS 2 matrix-vector operations and needs a lot of communication, ELPA also offers a two-step reduction routine, first transforming the full matrix to banded form and thereafter to tridiagonal form. This two-step reduction shortens the reduction time significantly but at the cost of a higher complexity of the back transformation step. We will show up to which part of the eigenspectrum the use of the two-step reduction pays off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FLEUR: The Jülich FLAPW code family. Website (May 2013). http://www.flapw.de

  2. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K., Walker, D., Whaley, R.: Scalapack: a portable linear algebra library for distributed memory computers-design issues and performance. Comput. Phys. Commun. 97(1–2), 1–15 (1996)

    Article  MATH  Google Scholar 

  3. Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Elemental: a new framework for distributed memory dense matrix computations. ACM Trans. Math. Softw. 39(2), 13:1–13:24 (2013)

    Article  Google Scholar 

  4. ELPA: Eigenvalue Solvers for Petaflop Applications home page. Website (May 2013). http://elpa.rzg.mpg.de

  5. FZJ-JSC: IBM Blue Gene/Q - JUQUEEN home page. Website (May 2013). http://www.fz-juelich.de/ias/jsc/juqueen

  6. Gutheil, I.: Performance evaluation of scalapack eigensolver routines on two hpc systems. In: 6th International Workshop on Parallel Matrix Algorithms and Applications (PMAA’10) (2010). http://juser.fz-juelich.de/record/10376

  7. Dhillon, I., Parlett, B., Vömel, C.: The design and implementation of the MRRR algorithm. ACM Trans. Math. Softw. (TOMS) 32(4), 533–560 (2006)

    Article  MATH  Google Scholar 

  8. Dhillon, I.: A new O(\(n^2\)) algorithm for the symmetric tridiagonal eigenvalue eigenvector problem. Ph.D. thesis, University of California, Berkeley (1997)

    Google Scholar 

  9. Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krämer, L., Lang, B., Lederer, H., Willems, P.: Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations. Parallel Comput. 37(12), 783–794 (2011)

    Article  Google Scholar 

  10. Auckenthaler, T., Bungartz, H.J., Huckle, T., Krämer, L., Lang, B., Willems, P.: Developing algorithms and software for the parallel solution of the symmetric eigenvalue problem. J. Comput. Sci. 2(3), 272–278 (2011)

    Article  Google Scholar 

  11. Gutheil, I., Berg, T., Grotendorst, J.: Performance analysis of parallel eigensolvers of two libraries on BlueGene/p. J. Math. Syst. Sci. 2(4), 231–236 (2012)

    Google Scholar 

  12. Petschow, M., Peise, E., Bientinesi, P.: High-performance solvers for dense hermitian eigenproblems. SIAM J. Sci. Comput. (SISC) 35(1), C1–C22 (2013). arXiv:1205.2107v2[cs.MS]

    Google Scholar 

  13. Münchhalfen, J.: Performance analysis and comparison of parallel eigensolvers on blue gene architectures. Berichte des Forschungszentrums Jülich (4359) 65 p. (2013). http://juser.fz-juelich.de/record/128657

Download references

Acknowledgements

The authors thank Jack Poulson, the author of the Elemental library and the ELPA team, especially Thomas Auckenthaler, for their immediate responses to problem reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Gutheil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutheil, I., Münchhalfen, J.F., Grotendorst, J. (2014). Performance of Dense Eigensolvers on BlueGene/Q. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2013. Lecture Notes in Computer Science(), vol 8384. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55224-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55224-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55223-6

  • Online ISBN: 978-3-642-55224-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics