Skip to main content

Neural Fields, Masses and Bayesian Modelling

  • Chapter
  • First Online:

Abstract

This chapter considers the relationship between neural field and mass models and their application to modelling empirical data. Specifically, we consider neural masses as a special case of neural fields, when conduction times tend to zero and focus on two exemplar models of cortical microcircuitry; namely, the Jansen-Rit and the canonical microcircuit model . Both models incorporate parameters pertaining to important neurobiological attributes, such as synaptic rate constants and the extent of lateral connections. We describe these models and show how Bayesian inference can be used to assess the validity of their field and mass variants, given empirical data. Interestingly, we find greater evidence for neural field variants in analyses of LFP data but fail to find more evidence for such variants, relative to their neural mass counterparts, in MEG (virtual electrode) data. The key distinction between these data is that LFP data are sensitive to a wide range of spatial frequencies and the temporal fluctuations that these frequencies contain. In contrast, the lead fields, inherent in non-invasive electromagnetic recordings, are necessarily broader and suppress temporal dynamics that are expressed in high spatial frequencies. We present this as an example of how neuronal field and mass models (hypotheses) can be compared formally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.fil.ion.ucl.ac.uk/spm/.

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atay, F.M., Hutt, A.: Neural fields with distributed transmission speeds and long-range feedback delays. SIAM J. Appl. Dyn. Syst. 5, 670–698 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J.: Canonical microcircuits for predictive coding. Neuron. 76(4), 695–711 (2012). doi:10.1016/j.neuron.2012.10.038

    Article  Google Scholar 

  4. Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A.: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296–1313 (2006)

    Article  Google Scholar 

  5. Bressloff, P.C.: New mechanism for neural pattern formation. Phys. Rev. Lett. 76, 4644–4647 (1996)

    Article  Google Scholar 

  6. Bressloff, P.C.: Traveling fronts and wave propagation failure in an inhomogeneous neural network. Phys. D Nonlinear Phenom. 155, 83–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., Desimone, R.: Laminar differences in gamma and alpha coherence in the ventral stream. Proc. Natl. Acad. Sci. 108, 11262 (2011)

    Article  Google Scholar 

  8. Coombes, S.: Waves, bumps, and patterns in neural field theories. Biol. Cybern. 93, 91–108 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Coombes, S., Lord, G.J., Owen, M.R.: Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Phys. D Nonlinear Phenom. 178, 219–241 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Coombes, S., Venkov, N.A., Shiau, L., Bojak, I., Liley, D.T.J., Laing, C.R.: Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys. Rev. E 76, 051901 (2007)

    Article  MathSciNet  Google Scholar 

  11. Daunizeau, J., Kiebel, S.J., Friston, K.J.: Dynamic causal modelling of distributed electromagnetic responses. Neuroimage 47, 590–601 (2009)

    Article  Google Scholar 

  12. David, O., Kiebel, S.J., Harrison, L.M., Mattout, J., Kilner, J.M., Friston, K.J.: Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage 30, 1255–1272 (2006)

    Article  Google Scholar 

  13. Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K.: The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092 (2008)

    Article  Google Scholar 

  14. Douglas, R.J., Martin, K.: A functional microcircuit for cat visual cortex. J. Physiol. 440, 735 (1991)

    Google Scholar 

  15. Freeman, W.J.: Linear analysis of dynamics of neural masses. Ann. Rev. Biophys. Bioeng. 1, 225–256 (1972)

    Article  Google Scholar 

  16. Freeman, W.J.: A neurobiological theory of meaning in perception. In: Proceedings of the international joint conference on neural networks, Portland, vols. 1–4, pp. 1373–1378 (2003)

    Google Scholar 

  17. Freeman, W.J.: A field-theoretic approach to understanding scale-free neocortical dynamics. Biol. Cybern. 92, 350–359 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modelling. Neuroimage 19, 1273–1302 (2003)

    Article  Google Scholar 

  19. Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., Penny, W.: Variational free energy and the Laplace approximation. Neuroimage 34, 220–234 (2007)

    Article  Google Scholar 

  20. Galka, A., Ozaki, T., Muhle, H., Stephani, U., Siniatchkin, M.: A data-driven model of the generation of human EEG based on a spatially distributed stochastic wave equation. Cognit. Neurodyn. 2, 101–113 (2008)

    Article  Google Scholar 

  21. Ghosh, A., Rho, Y., McIntosh, A.R., Kotter, R., Jirsa, V.K.: Cortical network dynamics with time delays reveals functional connectivity in the resting brain. Cognit. Neurodyn. 2, 115–120 (2008)

    Article  Google Scholar 

  22. Grindrod, P., Pinotsis, D.A.: On the spectra of certain integro-differential-delay problems with applications in neurodynamics. Phys. D Nonlinear Phenom. 240, 13–20 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Haeusler, S., Maass, W.: A statistical analysis of information-processing proper-ties of lamina-specific cortical microcircuit models. Cereb. Cortex 17, 149 (2007)

    Article  Google Scholar 

  24. Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366 (1995)

    Article  MATH  Google Scholar 

  25. Jirsa, V.K.: Neural field dynamics with local and global connectivity and time delay. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1131 (2009)

    Google Scholar 

  26. Jirsa, V.K., Haken, H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77, 960–963 (1996)

    Article  Google Scholar 

  27. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)

    Google Scholar 

  28. Kiebel, S.J., Garrido, M.I., Moran, R., Chen, C.C., Friston, K.J.: Dynamic causal modeling for EEG and MEG. Hum. Brain Mapp. 30, 1866–1876 (2009)

    Article  Google Scholar 

  29. Lefort, S., Tomm, C., Floyd Sarria, J.-C., Petersen, C.C.H.: The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009)

    Article  Google Scholar 

  30. Liley, D.T.J.: Neural field modelling of the electroencephalogram: physiological insights and practical applications. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds.) Neural Fields: Theory and Applications. Springer, Berlin/Heidelberg (2014)

    Google Scholar 

  31. Liley, D.T.J., Alexander, D.M., Wright, J.J., Aldous, M.D.: Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons. Netw. Comput. Neural Syst. 10, 79–92 (1999)

    Article  MATH  Google Scholar 

  32. Liley, D.T.J., Cadusch, P.J., Dafilis, M.P.: A spatially continuous mean field theory of electrocortical activity. Netw. Comput. Neural Syst. 13, 67–113 (2002)

    Article  MATH  Google Scholar 

  33. Lopes da Silva, F.H., Storm van Leeuwen, W.: The cortical alpha rhythm in dog: the depth and surface profile of phase. Raven Press, New York (1978)

    Google Scholar 

  34. Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of brain rhythmic activity. Biol. Cybern. 15, 27–37 (1974)

    Google Scholar 

  35. Lumer, E.D., Edelman, G.M., Tononi, G.: Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cereb. Cortex 7, 207 (1997)

    Google Scholar 

  36. Markounikau, V., Igel, C., Grinvald, A., Jancke, D.: A dynamic neural field model of mesoscopic cortical activity captured with voltage-sensitive dye imaging. PLoS Comput. Biol. 6(9), e1000919 (2010). doi:10.1371/journal.pcbi.1000919

    Article  MathSciNet  Google Scholar 

  37. Moran, R.J., Kiebel, S.J., Stephan, K.E., Reilly, R.B., Daunizeau, J., Friston, K.J.: A neural mass model of spectral responses in electrophysiology. Neuroimage 37, 706–720 (2007)

    Article  Google Scholar 

  38. Moran, R.J., Stephan, K.E., Seidenbecher, T., Pape, H.C., Dolan, R.J., Friston, K.J.: Dynamic causal models of steady-state responses. Neuroimage 44, 796–811 (2009)

    Article  Google Scholar 

  39. Moran, R.J., Jung, F., Kumagai, T., Endepols, H., Graf, R., Dolan, R.J., Friston, K.J., Stephan, K.E., Tittgemeyer, M.: Dynamic causal models and physiological inference: a validation study using isoflurane anaesthesia in rodents. PLoS One 6(8), e22790 (2011). doi:10.1371/journal.pone.0022790

    Article  Google Scholar 

  40. Nunez, P.L.: Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York (1995)

    Google Scholar 

  41. Nunez, P.L.: Multiscale neocortical dynamics, experimental EEG measures, and global facilitation of local cell assemblies. Behav. Brain Sci. 19, 305 (1996)

    Article  Google Scholar 

  42. Nunez, P.L., Srinivasan, R.: Electric Fields of the Brain, vol. 1, Oxford University Press, p. i-612 (2006)

    Google Scholar 

  43. Penny, W.D., Stephan, K.E., Daunizeau, J., Rosa, M.J., Friston, K.J., Schofield, T.M., Leff, A.P.: Comparing families of dynamic causal models. PLoS Comput. Biol. 6, e1000709 (2010)

    Article  MathSciNet  Google Scholar 

  44. Potthast, R., beim Graben, P.: Inverse problems in neural field theory. SIAM J. Appl. Dyn. Syst. 8(4), 1405–1433 (2009)

    Google Scholar 

  45. Pinotsis, D.A., Friston, K.J.: Neural fields, spectral responses and lateral connections. Neuroimage 55, 39–48 (2011)

    Article  Google Scholar 

  46. Pinotsis, D.A., Moran, R.J., Friston, K.J.: Dynamic causal modeling with neural fields. Neuroimage 59, 1261–1274 (2012)

    Article  Google Scholar 

  47. Qubbaj, M.R., Jirsa, V.K.: Neural field dynamics under variation of local and global connectivity and finite transmission speed. Phys. D Nonlinear Phenom. 238, 2331–2346 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Raizada, R.D.S., Grossberg, S.: Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. Cereb. Cortex 13, 100–113 (2003)

    Article  Google Scholar 

  49. Riera, J.J., Jimenez, J.C., Wan, X., Kawashima, R., Ozaki, T.: Nonlinear local electrovascular coupling. II: from data to neuronal masses. Hum. Brain Mapp. 28, 335–354 (2007)

    Google Scholar 

  50. Robinson, P.A.: Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys. Rev. E 73, 041904 (2006)

    Article  MathSciNet  Google Scholar 

  51. Robinson, P.A., Loxley, P.N., O’Connor, S.C., Rennie, C.J.: Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. Phys. Rev. E 63(4), 041909 (2001)

    Article  Google Scholar 

  52. Robinson, P.A., Rennie, C.J., Rowe, D.L.: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924 (2002)

    Article  Google Scholar 

  53. Robinson, P.A., Rennie, C.J., Rowe, D., O’Connor, S.C., Wright, J.J., Gordon, E., Whitehouse, R.W.: Neurophysical modeling of brain dynamics. Neuropsychopharmacology 28, S74–S79 (2003)

    Article  Google Scholar 

  54. Roopun, A.K., Kramer, M.A., Carracedo, L.M., Kaiser, M., Davies, C.H., Traub, R.D., Kopell, N.J., Whittington, M.A.: Period concatenation underlies interactions between gamma and beta rhythms in neocortex. Front Cell Neurosci. 2, 1 (2008)

    Article  Google Scholar 

  55. Schiff, S., Sauer, T.: Kalman filter control of a model of spatiotemporal cortical dynamics. BMC Neurosci. 9, O1 (2008)

    Article  Google Scholar 

  56. Schwarzkopf, D.S., Robertson, D.J., Song, C., Barnes, G.R., Rees, G.: The frequency of visually induced gamma-band oscillations depends on the size of early human visual cortex. J. Neurosci. 32, 1507–1512 (2012)

    Article  Google Scholar 

  57. Steriade, M., Deschenes, M.: The thalamus as a neuronal oscillator. Brain Res. Rev. 8, 1–63 (1984)

    Article  Google Scholar 

  58. Valdes, P.A., Jimenez, J.C., Riera, J., Biscay, R., Ozaki, T.: Nonlinear EEG analysis based on a neural mass model. Biolog. Cybern. 81, 415–424 (1999)

    Article  MATH  Google Scholar 

  59. Van Rotterdam, A., Lopes da Silva, F.H., Van den Ende, J., Viergever, M.A., Hermans, A.J.: A model of the spatial-temporal characteristics of the alpha rhythm. Bull. Math. Biol. 44, 283–305 (1982)

    Google Scholar 

  60. Van Veen, B.D., Van Drongelen, W., Yuchtman, M., Suzuki, A.: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44, 867–880 (1997)

    Article  Google Scholar 

  61. Weiler, N., Wood, L., Yu, J., Solla, S.A., Shepherd, G.M.G.: Top-down laminar organization of the excitatory network in motor cortex. Nat. Neurosci. 11, 360–366 (2008)

    Article  Google Scholar 

  62. Wilson, H.R., Cowan, J.D.: Mathematical theory of functional dynamics of cortical and thalamic nervous-tissue. Kybernetik 13, 55–80 (1973)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris A. Pinotsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pinotsis, D.A., Friston, K.J. (2014). Neural Fields, Masses and Bayesian Modelling. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds) Neural Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54593-1_17

Download citation

Publish with us

Policies and ethics