Skip to main content

Computing the L 1 Geodesic Diameter and Center of a Simple Polygon in Linear Time

  • Conference paper
LATIN 2014: Theoretical Informatics (LATIN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8392))

Included in the following conference series:

Abstract

In this paper, we show that the L 1 geodesic diameter and center of a simple polygon can be computed in linear time. For the purpose, we focus on revealing basic geometric properties of the L 1 geodesic balls, that is, the metric balls with respect to the L 1 geodesic distance. More specifically, in this paper we show that any family of L 1 geodesic balls in any simple polygon has Helly number two, and the L 1 geodesic center consists of midpoints of shortest paths between diametral pairs. These properties are crucial for our linear-time algorithms, and do not hold for the Euclidean case.

S.W. Bae was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A1A05006927). Y. Okamoto was supported by Grant-in-Aid for Scientific Research from Ministry of Education, Science and Culture, Japan, and Japan Society for the Promotion of Science (JSPS). H. Wang was supported in part by NSF under Grant CCF-1317143.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilbur, R.: Geometric applications of a matrix-searching algorithm. Algorithmica 2, 195–208 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asano, T., Toussaint, G.: Computing the geodesic center of a simple polygon. Technical Report SOCS-85.32. McGill University (1985)

    Google Scholar 

  3. Bae, S.W., Korman, M., Okamoto, Y.: The geodesic diameter of polygonal domains. Discrete Comput. Geom. 50(2), 306–329 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bae, S.W., Korman, M., Okamoto, Y., Wang, H.: Computing the L 1 geodesic diameter and center of a simple polygon in linear time. ArXiv e-prints (2013), arXiv:1312.3711

    Google Scholar 

  5. Breen, M.: A Helly-type theorem for simple polygons. Geometriae Dedicata 60, 283–288 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. 23rd Annu. Sympos. Found. Comput. Sci. (FOCS 1982), pp. 339–349 (1982)

    Google Scholar 

  7. Djidjev, H., Lingas, A., Sack, J.R.: An O(nlogn) algorithm for computing the link center of a simple polygon. Discrete Comput. Geom. 8, 131–152 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class. Comput. Geom.: Theory and Appl. 4(2), 63–97 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hershberger, J., Suri, S.: Matrix searching with the shortest path metric. SIAM J. Comput. 26(6), 1612–1634 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Katz, M.J., Morgenstern, G.: Settling the bound on the rectilinear link radius of a simple rectilinear polygon. Inform. Proc. Lett. 111, 103–106 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ke, Y.: An efficient algorithm for link-distance problems. In: Proc. 5th Annu. Sympos. Comput. Geom. (SoCG 1989), pp. 69–78 (1989)

    Google Scholar 

  13. Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Computational Geometry, ch. 27, 2nd edn., pp. 607–641. CRC Press, Inc. (2004)

    Google Scholar 

  14. Nilsson, B.J., Schuierer, S.: Computing the rectilinear link diameter of a polygon. In: Bieri, H., Noltemeier, H. (eds.) CG-WS 1991. LNCS, vol. 553, pp. 203–215. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  15. Nilsson, B.J., Schuierer, S.: An optimal algorithm for the rectilinear link center of a rectilinear polygon. Comput. Geom.: Theory and Appl. 6, 169–194 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(6), 611–626 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schuierer, S.: Computing the L 1-diameter and center of a simple rectilinear polygon. In: Proc. Int. Conf. on Computing and Information (ICCI 1994), pp. 214–229 (1994)

    Google Scholar 

  18. Suri, S.: The all-geodesic-furthest neighbors problem for simple polygons. In: Proc. 3rd Annu. Sympos. Comput. Geom. (SoCG 1987), pp. 64–75 (1987)

    Google Scholar 

  19. Suri, S.: Minimum Link Paths in Polygons and Related Problems. Ph.D. thesis. Johns Hopkins Univ. (1987)

    Google Scholar 

  20. Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci. 39(2), 220–235 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bae, S.W., Korman, M., Okamoto, Y., Wang, H. (2014). Computing the L 1 Geodesic Diameter and Center of a Simple Polygon in Linear Time. In: Pardo, A., Viola, A. (eds) LATIN 2014: Theoretical Informatics. LATIN 2014. Lecture Notes in Computer Science, vol 8392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54423-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54423-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54422-4

  • Online ISBN: 978-3-642-54423-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics