Skip to main content

Abstract

The use of isotopically labelled compounds has revolutionized our understanding of the chemistry of living systems. Nowhere is the power of this technique more apparent than in the area of methyl metabolism for here we are dealing with the fate of but a single carbon atom. Furthermore, because only one carbon is involved it has been possible to determine if and when the methyl group moves in biochemical systems as an intact CH3 radical, and alternatively if, and when, transfer of the methyl carbon involves an oxidation-reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, R. H.: Dual nature of isotope effect in metabolism of sarcosine-CD3. Fed. Proc. 14, 170 (1955).

    Google Scholar 

  • Arnstein, H. R. V.: The biosynthesis of choline methyl groups in the rat. Biochem. J. 47, XVIII (1950).

    PubMed  CAS  Google Scholar 

  • Arnstein, H. R. V.: The biosynthesis of choline methyl groups by the rat. Biochem. J. 48, 27 (1951).

    PubMed  CAS  Google Scholar 

  • Arnstein, H. R. V., and A. Neuberger: The effect of cobalamin on the quantitative utilization of serine, glycine, and formate for the synthesis of choline and methyl groups of methionine. Biochem. J. 55, 259 (1953).

    PubMed  CAS  Google Scholar 

  • Axelrod, J., and R. Tomchick: Enzymatic 0-methylation of epinephrine and other catechols. J. biol. Chem. 233, 702 (1958).

    PubMed  CAS  Google Scholar 

  • Bennett, M. A.: Utilization of homocystine for growth in presence of vitamin B12 and folic acid. J. biol. Chem. 187, 751 (1950).

    PubMed  CAS  Google Scholar 

  • Berg, P.: Synthesis of labile methyl groups by guinea pig tissue in vitro. J. biol. Chem. 190, 31 (1951).

    PubMed  CAS  Google Scholar 

  • Borsook, H., and J. W. Dubnoff: The formation of creatine from glycocyamine in the liver. J. biol. Chem. 132, 559 (1940).

    CAS  Google Scholar 

  • Canellakis, E. S., and H. Tarver: Studies on protein synthesis in vitro. IX. Concerning the apparent uptake of methionine by particulate preparations from liver. Arch. Biochem. 42, 387 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Canellakis, E. S., and H. Tarver: The metabolism of methyl mercaptan in the intact animal. Arch. Biochem. 42, 446 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Cantoni, G. L.: S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. biol. Chem. 204, 403 (1953).

    CAS  Google Scholar 

  • Dubnoff, J. W.: The role of choline oxidase in labilizing choline methyl. Arch. Biochem. 24, 251 (1949).

    PubMed  CAS  Google Scholar 

  • Elwyn, D., and D. B. Sprinson: The extensive synthesis of the methyl groups of thymine in the adult rat. J. Amer. chem. Soc. 72, 3317 (1950).

    Article  CAS  Google Scholar 

  • Elwyn, D., A. Weissbach, and D. B. Sprinson: The synthesis of methyl groups from serine and its bearing on the metabolism of one-carbon fragments. J. Amer. chem. Soc. 73, 5509 (1951).

    Article  CAS  Google Scholar 

  • Elwyn, D., A. Weissbach, S.S. Henry, and D. B. Sprinson: The biosynthesis of choline from serine and related compounds. J. biol. Chem. 213, 281 (1955).

    PubMed  CAS  Google Scholar 

  • Erlenmeyer, H., W. Schoenauer, and H. Süllmann: Chemical and biochemical dehydrogenation of an ethane-α,d,α1-d-dicarboxylic acid. Helv. chim. Acta 19, 1376 (1936).

    Article  CAS  Google Scholar 

  • Eyring, H., and A. Sherman: Theoretical considerations concerning the separation of isotopes. J. chem. Phys. 1, 345 (1933).

    Article  CAS  Google Scholar 

  • Frisell, W. R., and C. G. Mackenzie: The binding sites of sarcosine oxidase. J. biol. Chem. 217, 275 (1955).

    PubMed  CAS  Google Scholar 

  • Greenberg, G. R., and L. Jaenicke: On the activation of the one-carbon unit for the biosynthesis of purine nucleotides. In Chemistry and biology of purines, Wolstenholme, G. E. W., and C. M. O’Conner, Eds. 204. Boston: Little, Brown 1957.

    Google Scholar 

  • Hofmeister, F.: Über Methylierung im Tierkörper. Naunyn-Schmiederbergs Arch. exp. Path. Pharmak. 33, 198 (1894).

    Google Scholar 

  • Horner, W. H., and C. G. Mackenzie: The biological formation of sarcosine. J. biol. Chem. 187, 15 (1950).

    PubMed  CAS  Google Scholar 

  • Huennekens, F. M., M. J. Osborn, and H. R. Whiteley: Folic acid coenzymes. Science 128, 120 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J. M., and C. G. Mackenzie: Isolation of radioformaldehyde in the metabolism of dimethylaminoethanol-C14H3. J. biol. Chem. 221, 301 (1956).

    PubMed  CAS  Google Scholar 

  • Jonsson, S., and W. A. Mosher: The in vivo synthesis of labile methyl groups. J. Amer. chem. Soc. 72, 3316 (1950).

    Article  CAS  Google Scholar 

  • Jukes, T. H., and E. L. R. Stokstad: The role of vitamin B12 in metabolic processes. Vitam. and Horm. 9, 1 (1951).

    Article  CAS  Google Scholar 

  • Keller, E. B., R. A. Boissonnas, and V. du Vigneaud: The origin of the methyl group of epinephrine. J. biol. Chem. 183, 627 (1950).

    CAS  Google Scholar 

  • Keller, E. B., J. R. Rachele, and V. du Vigneaud: A study of transmethylation with methionine containing deuterium and C14 in the methyl group. J. biol. Chem. 177, 733 (1949).

    PubMed  CAS  Google Scholar 

  • Kruhoffer, P.: On the role played by formate in serine biosynthesis. Biochem. J. 48, 604 (1951).

    PubMed  CAS  Google Scholar 

  • Lowy, B. A., G. B. Brown, and J. R. Rachele: A study of formaldehyde-C14, D2 as a one-carbon metabolite in the rat. J. biol. Chem. 220, 325 (1956).

    PubMed  CAS  Google Scholar 

  • Mackenzie, C. G.: Biological antioxidants. Transactions of the fourth conference. New York: Josiah Macy, jr. Foundation 1950.

    Google Scholar 

  • Mackenzie, C. G.: Formation of formaldehyde and formate in the biooxidation of the methyl group. J. biol. Chem. 186, 351 (1950).

    PubMed  CAS  Google Scholar 

  • Mackenzie, C. G.: Conversion of N-methylglycines to active formaldehyde and serine, in Amino acid metabolism. McElroy, W. D., and B. Glass, Eds. 702. Baltimore: The Johns Hopkins Press 1955.

    Google Scholar 

  • Mackenzie, C. G., and R. H. Abeles: Production of active formaldehyde in the mitochondrial oxidation of sarcosine-CD3. J. biol. Chem. 222, 145 (1956).

    PubMed  CAS  Google Scholar 

  • Mackenzie, C. G., J. P. Chandler, E. B. Keller, J. R. Rachele, N. Cross, D. B. Melville, and V. du Vigneaud: The demonstration of the oxidation in vivo of the methyl group of methionine. J. biol. Chem. 169, 757 (1947).

    PubMed  CAS  Google Scholar 

  • Mackenzie, C. G., J. P. Chandler, E. B. Keller, J. R. Rachele, N. Cross, and V. du Vigneaud: The oxidation and distribution of the methyl group administerred as methionine. J. biol. Chem. 180, 199 (1949).

    Google Scholar 

  • Mackenzie, C. G., and W. R. Frisell: The metabolism of dimethylglycine by liver mitochondria. J. biol. Chem. 232, 417 (1958).

    PubMed  CAS  Google Scholar 

  • Mackenzie, C. G., J. M. Johnston, and W. R. Frisell: The isolation of formaldehyde from dimethylaminoethanol, dimethylglycine, sarcosine, and methanol. J. biol. Chem. 203, 743 (1953).

    PubMed  CAS  Google Scholar 

  • Mackenzie, C. G., J. R. Rachele, N. Cross, J. P. Chandler, and V. du Vigneaud: A study of the rate of oxidation of the methyl group of dietary methionine. J. biol. Chem. 183, 617 (1950).

    CAS  Google Scholar 

  • Mackenzie, C. G., and V. du Vigneaud: Effect of choline and cystine on the oxidation of the methyl group of methionine. J. biol. Chem. 195, 487 (1952).

    PubMed  CAS  Google Scholar 

  • Melville, D. B., J. R. Rachele, and E. B. Keller: A synthesis of methionine containing radio-carbon in the methyl group. J. biol. Chem. 169, 419 (1947).

    PubMed  CAS  Google Scholar 

  • Michaelis, L., and M. L. Menten: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333 (1913).

    CAS  Google Scholar 

  • Mitoma, C., and D. M. Greenberg: Precursors of beta carbon of serine and of methionine methyl group. Fed. Proc. 10, 225 (1951).

    Google Scholar 

  • Mitoma, C., and D. M. Greenberg: Studies on the mechanism of the biosynthesis of serine. J. biol. Chem. 196, 599 (1952).

    PubMed  CAS  Google Scholar 

  • Muntz, J. A.: The inability of choline to transfer a methyl group directly to homocysteine for methionine formation. J. biol. Chem. 182, 489 (1950).

    CAS  Google Scholar 

  • Pilgeram, L. O., E. M. Gal, E. N. Sassenrath, and D. M. Greenberg: Metabolic studies with ethanolamine-1,2-C14. J. biol. Chem. 204, 367 (1953).

    PubMed  CAS  Google Scholar 

  • Plaut, G. W. E., J. J. Betheil, and H. A. Lardy: The relationship of folic acid to formate metabolism in the rat. J. biol. Chem. 184, 795 (1950).

    PubMed  CAS  Google Scholar 

  • Rachele, J. R., and H. Aebi: Methyl synthesis in the rat from formate intramolecularly labeled with C14 and deuterium. Fed. Proc. 15, 333 (1956).

    Google Scholar 

  • Rachele, J. R., E. J. Kuchinskas, J. E. Knoll, and M. L. Eidinoff: Isotopic selection in the neogenesis of labile methyl groups from monodeuterio-, monotritio-, C14-labelled methanol. J. Amer. chem. Soc. 76, 4342 (1954).

    Article  CAS  Google Scholar 

  • Rachele, J. R., E. J. Kuchinskas, F. H. Kratzer, and V. du Vigneaud: Hydrogen isotope effect in the oxidation in vivo of methionine labelled in the methyl group. J. biol. Chem. 215, 593 (1955).

    PubMed  CAS  Google Scholar 

  • Rachele, J. R., A. M. White, and H. Grünewald: Biosynthesis of labile methyl groups and of serine from intramolecularly labeled formaldehyde-C14, D2, abstracts. Amer. chem. Soc. 57 C, 132nd Meeting, New York, September 1957.

    Google Scholar 

  • Ressler, C, J. R. Rachele, and V. du Vigneaud: Studies in vivo on labile methyl synthesis with deuterio-C14-formate. J. biol. Chem. 197, 1 (1952).

    PubMed  CAS  Google Scholar 

  • Sakami, W.: The conversion of formate and glycine to serine and glycogen in the intact rat. J. biol. Chem. 176, 995 (1948).

    PubMed  CAS  Google Scholar 

  • Sakami, W.: The conversion of glycine into serine in the intact rat. J. biol. Chem. 178, 519 (1949).

    PubMed  CAS  Google Scholar 

  • Sakami, W.: The formation of the β-carbon of serine from choline methyl groups. J. biol. Chem. 179, 495 (1949).

    PubMed  CAS  Google Scholar 

  • Sakami, W.: The biochemical relationship between glycine and serine, in Amino acid metabolism. McElroy, W. D., and B. Glass, Eds. 658. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Sakami, W., and A. D. Welch: Synthesis of labile methyl groups by the rat in vivo and in vitro. J. biol. Chem. 187, 379 (1950).

    PubMed  CAS  Google Scholar 

  • Schenck, J. R., S. Simmonds, M. Cohn, C M. Stevens, and V. du Vigneaud: The relation of transmethylation to anserine. J. biol. Chem. 149, 355 (1943).

    CAS  Google Scholar 

  • Siegel, I., and J. Lafaye: Formation of the β-carbon of serine from formaldehyde. Proc. Soc. exp. Biol. (N. Y.) 74, 620 (1950).

    Article  CAS  Google Scholar 

  • Siekevitz, P., and D. M. Greenberg: The biological formation of formate from methyl compounds in liver slices. J. biol. Chem. 186, 275 (1950).

    PubMed  CAS  Google Scholar 

  • Siekevitz, P., T. Winnick, and D. M. Greenberg: The biological synthesis of serine from glycine. Fed. Proc. 8, 250 (1949).

    Google Scholar 

  • Simmonds, S., M. Cohn, J. P. Chandler, and V. du Vigneaud: The utilization of the methyl groups of choline in the biological synthesis of methionine. J. biol. Chem. 149, 519 (1943).

    CAS  Google Scholar 

  • Simmonds, S., and V. du Vigneaud: A further study of the lability of the methyl group of creatine. Proc. Soc. exp. Biol. (N. Y.) 59, 293 (1945).

    Article  CAS  Google Scholar 

  • Sprinson, D. B.: The formation of C1 fragments from serine, in amino acid metabolism. McElroy, W. D., and B. Glass, Eds. 608, Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Stekol, J. A., K. W. Weiss, and S. Weiss: Role of folacine and vitamin B12 in synthesis and utilization of choline by the rat as studied with C-14-glycine, formate, and methionine. Fed. Proc. 10, 252 (1951).

    Google Scholar 

  • Stekol, J. A., S. Weiss, and E. I. Anderson: On the origin of the methyl groups of phospholipid choline in the rat. J. Amer. chem. Soc. 77, 5192 (1955).

    Article  CAS  Google Scholar 

  • Stetten, D. jr.: Biological relationships of choline, ethanolamine, and related compounds. J. biol. Chem. 138, 437 (1941).

    CAS  Google Scholar 

  • Stetten, D. jr.: Biological relationships of choline, ethanolamine, and related compounds. J. biol. Chem. 140, 143 (1941).

    CAS  Google Scholar 

  • Thorn, M. B.: Studies on the enzymic oxidation of succinic acid containing deuterium in the methylene groups. Biochem. J. 49, 602 (1951).

    PubMed  CAS  Google Scholar 

  • Toennies, G., M. A. Bennett, and G. Medes: The ability of homocystine to support rat growth in the absence of dietary choline and methionine. Growth 7, 251 (1943).

    CAS  Google Scholar 

  • Verly, W. G., J. R. Rachele, V. du Vigneaud, M. L. Eidinoff, and J. E. Knoll: A test of tritium as a labeling device in a biological study. J. Amer. chem. Soc. 74, 5941 (1952).

    Article  CAS  Google Scholar 

  • Vigneaud, V. du, J. P. Chandler, M. Cohn, and G. B. Brown: The transfer of the methyl group from methionine to choline and creatine. J. biol. Chem. 134, 787 (1940).

    Google Scholar 

  • Vigneaud, V. du, and A. W. Moyer: The inability of creatine and creatinine to enter into transmethylation in vivo. J. biol. Chem. 139, 917 (1941).

    Google Scholar 

  • Vigneaud, V. du, and A. W. Moyer, and D.M. Keppel: The ability of homocystine plus choline to support growth of the white rat on a methionine-free diet. Proc. Amer. Soc. Biol. Chem., J.biol.Chem. 128, CVIII (1939).

    Google Scholar 

  • Vigneaud, V. du, and A. W. Moyer, and D.M. Keppel: The effect of choline on the ability of homocystine to replace methionine in the diet. J. biol. Chem. 131, 57 (1939).

    Google Scholar 

  • Vigneaud, V. du, S. Simmonds, A. W. Moyer, and M. Cohn: The role of dimethyl- and monomethylamino-ethanol in transmethylation reactions in vivo. J. biol. Chem. 164, 603 (1946).

    PubMed  Google Scholar 

  • Vigneaud, M. Cohn, J. P. Chandler, J. R. Schenck, and S. Simmonds: The utilization of the methyl group of methionine in the biological synthesis of choline and creatine. J. biol. Chem. 140, 1625 (1941).

    Google Scholar 

  • Vigneaud, J., M. Kinney, J. E. Wilson, and J. R. Rachele: Effect of the presence of labile methyl groups in the diet on labile methyl neogenesis. Biochem. biophys. Acta 12, 88 (1953).

    Article  Google Scholar 

  • Vigneaud, J. R. Rachele, and A. M. White: A crucial test of transmethylation in vivo by intramolecular isotopic labeling. J. Amer. chem. Soc. 78, 5131 (1956).

    Article  Google Scholar 

  • Vigneaud, C. Ressler, and J. R. Rachele: The biological synthesis of “labile methyl groups”. Science 112, 267 (1950).

    Article  PubMed  Google Scholar 

  • Vigneaud, C. Ressler, and J. R. Rachele, J. A. Reyniers, and T. D. Luckey: The synthesis of “biologically labile” methyl groups in the germ-free rat. J. Nutr. 45, 361 (1951).

    Google Scholar 

  • Vigneaud, S. Simmonds, J. P. Chandler, and M. Cohn: Synthesis of labile methyl groups in the white rat. J. biol. Chem. 159, 755 (1945).

    Google Scholar 

  • Vigneaud, S. Simmonds, J. P. Chandler, and M. Cohn: A further investigation of the role of betaine in transmethylation reactions in vivo. J. biol. Chem. 165, 639 (1946).

    PubMed  Google Scholar 

  • Vigneaud, S. Simmonds, and M. Cohn: A further investigation of the ability of sarcosine to serve as a labile methyl donor. J. biol. Chem. 166, 47 (1946).

    PubMed  Google Scholar 

  • Vigneaud, V. du, and W. G. L. Verly: Incorporation in vivo of C14 from labeled methanol into the methyl groups of choline. J. Amer. chem. Soc. 72, 1049 (1950).

    Article  Google Scholar 

  • Vigneaud, J. E. Wilson, J. R. Rachele, C. Ressler, and J. M. Kinney: One-carbon compounds in the biosynthesis of the “biologically labile” methyl group. J. Amer. chem. Soc. 73, 2782 (1951).

    Article  Google Scholar 

  • Weissbach, A., D. Elwyn, and D. B. Sprinson: The synthesis of the methyl groups and ethanolamine moiety of choline from serine and glycine in the rat. J. Amer. chem. Soc. 72, 3316 (1950).

    Article  CAS  Google Scholar 

  • Welch, A. D., and W. Sakami: Synthesis of labile methyl groups by animal tissues in vivo and in vitro. Fed. Proc. 9, 245 (1950).

    Google Scholar 

  • Willstätter, R.: Über Betaine. Ber. dtsch. chem. Ges. 35, 1584 (1902).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frisell, W.R., Mackenzie, C.G. (1961). Metabolism of N and S Methyl Groups. In: Aisenberg, A.C., et al. Radioactive Isotopes in Physiology Diagnostics and Therapy / Künstliche Radioaktive Isotope in Physiologie Diagnostik und Therapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49761-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49761-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49477-2

  • Online ISBN: 978-3-642-49761-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics