Skip to main content

A Fault Tolerant Parallel Computing Scheme of Scalar Multiplication for Wireless Sensor Networks

  • Conference paper
  • 1822 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8314))

Abstract

In event-driven sensor networks, when a critical event occurs, sensors should transmit messages back to base station in a secure and reliable manner. We choose Elliptic Curve Cryptography to secure the network since it offers faster computation and good security with shorter keys. In order to minimize the running time, we propose to split and distribute the computation of scalar multiplications by involving neighboring nodes in this operation. In order to improve the reliability, we have also proposed a fault tolerance mechanism. It uses half of the available cluster members as backup nodes which take over the work of faulty nodes in case of system failure. Parallel computing does consume more resources, but the results of simulation show that the computation can be significantly accelerated. This method is designed specially for applications where running time is the most important factor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38(4), 393–422 (2002)

    Article  Google Scholar 

  2. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52(12), 2292–2330 (2008)

    Article  Google Scholar 

  3. Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh, M.: Deploying a wireless sensor network on an active volcano. IEEE Internet Computing 10(2), 18–25 (2006)

    Article  Google Scholar 

  4. Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Wireless sensor networks for structural health monitoring. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, pp. 427–428. ACM (2006)

    Google Scholar 

  5. Baker, C.R., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., Burkhart, N., Der Minassians, A., Dervisoglu, G., Gutnik, L., Haick, M.B., et al.: Wireless sensor networks for home health care. In: 21st International Conference on Advanced Information Networking and Applications Workshops, AINA 2007, vol. 2, pp. 832–837. IEEE (2007)

    Google Scholar 

  6. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: Codeblue: An ad hoc sensor network infrastructure for emergency medical care. In: International Workshop on Wearable and Implantable Body Sensor Networks, vol. 5 (2004)

    Google Scholar 

  7. Gosnell, T., Hall, J., Jam, C., Knapp, D., Koenig, Z., Luke, S., Pohl, B., Schach von Wittenau, A., Wolford, J.: Gamma-ray identification of nuclear weapon materials. Technical report, Lawrence Livermore National Lab, Livermore, CA, US (1997)

    Google Scholar 

  8. Walters, J.P., Liang, Z., Shi, W., Chaudhary, V.: Wireless sensor network security: A survey. Security in Distributed, Grid, Mobile, and Pervasive Computing 1, 367 (2007)

    Google Scholar 

  9. Zhou, Y., Fang, Y., Zhang, Y.: Securing wireless sensor networks: a survey. IEEE Communications Surveys & Tutorials 10(3), 6–28 (2008)

    Article  Google Scholar 

  10. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27(1), 129–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shou, Y., Guyennet, H., Lehsaini, M.: Parallel scalar multiplication on elliptic curves in wireless sensor networks. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 300–314. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  15. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit cPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Hankerson, D., Vanstone, S., Menezes, A.: Guide to elliptic curve cryptography. Springer-Verlag New York Inc. (2004)

    Google Scholar 

  17. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Heidelberg (1994)

    Google Scholar 

  19. Mishra, S., Jena, L., Pradhan, A.: Fault tolerance in wireless sensor networks. International Journal 2(10), 146–153 (2012)

    Google Scholar 

  20. Rajasegarar, S., Leckie, C., Palaniswami, M., Bezdek, J.C.: Distributed anomaly detection in wireless sensor networks. In: 10th IEEE Singapore International Conference on Communication systems, ICCS 2006, pp. 1–5. IEEE (2006)

    Google Scholar 

  21. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Barbará, D., Jajodia, S. (eds.) Applications of Data Mining in Computer Security. Advances in Information Security, vol. 6, pp. 77–101. Springer, US (2002)

    Chapter  Google Scholar 

  22. Chen, J., Kher, S., Somani, A.: Distributed fault detection of wireless sensor networks. In: Proceedings of the 2006 Workshop on Dependability Issues in Wireless Ad hoc Networks and Sensor Networks, pp. 65–72. ACM (2006)

    Google Scholar 

  23. Gupta, G., Younis, M.: Fault-tolerant clustering of wireless sensor networks. In: 2003 IEEE Wireless Communications and Networking, WCNC 2003, pp. 1579–1584. IEEE (2003)

    Google Scholar 

  24. Raj, R., Ramesh, M.V., Kumar, S.: Fault tolerant clustering approaches in wireless sensor network for landslide area monitoring. In: Proceedings of the 2008 International Conference on Wireless Networks (ICWN 2008), vol. 1, pp. 107–113 (2008)

    Google Scholar 

  25. Koushanfar, F., Potkonjak, M., Sangiovanni-vincentelli, A.: Fault tolerance in wireless sensor networks. In: Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems (2004)

    Google Scholar 

  26. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences. IEEE (2000)

    Google Scholar 

  27. Burchfield, T.R., Venkatesan, S., Weiner, D.: Maximizing throughput in zigbee wireless networks through analysis, simulations and implementations. In: Proceedings of the International Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks Santa Fe, pp. 15–29. Citeseer, New Mexico (2007)

    Google Scholar 

  28. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H., et al.: An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications 1(4), 660–670 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shou, Y., Guyennet, H. (2014). A Fault Tolerant Parallel Computing Scheme of Scalar Multiplication for Wireless Sensor Networks. In: Chatterjee, M., Cao, Jn., Kothapalli, K., Rajsbaum, S. (eds) Distributed Computing and Networking. ICDCN 2014. Lecture Notes in Computer Science, vol 8314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45249-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45249-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45248-2

  • Online ISBN: 978-3-642-45249-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics