Skip to main content

Multi-task Learning for Computational Biology: Overview and Outlook

  • Chapter
  • First Online:
Empirical Inference

Abstract

We present an overview of the field of regularization-based multi-task learning, which is a relatively recent offshoot of statistical machine learning. We discuss the foundations as well as some of the recent advances of the field, including strategies for learning or refining the measure of task relatedness. We present an example from the application domain of Computational Biology, where multi-task learning has been successfully applied, and give some practical guidelines for assessing a priori, for a given dataset, whether or not multi-task learning is likely to pay off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ando, R., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems 19, Vancouver. MIT Press, Cambridge (2007)

    Google Scholar 

  3. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 2777, 149–198 (2000)

    MathSciNet  Google Scholar 

  4. Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning. Lect. Notes Comput. Sci. 2777, 567–580 (2003)

    Article  Google Scholar 

  5. Blanchard, G., Lee, G., Scott, C.: Generalizing from several related classification tasks to a new unlabeled sample. In: Advances in Neural Information Processing Systems, Granada, vol. 24 (2011)

    Google Scholar 

  6. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT’92, Pittsburgh, pp. 144–152. ACM, New York (1992)

    Google Scholar 

  7. Caruana, R.: Multitask learning: a knowledge-based source of inductive bias. In: ICML, Amherst, pp. 41–48. Morgan Kaufmann (1993)

    Google Scholar 

  8. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  10. Daumé, H.: Frustratingly easy domain adaptation. In: Annual Meeting—Association for Computational Linguistics, Prague, vol. 45, p. 256 (2007)

    Google Scholar 

  11. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: International Conference on Knowledge Discovery and Data Mining, Chicago, p. 109 (2004)

    Google Scholar 

  12. Evgeniou, T., Micchelli, C., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6(1), 615–637 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Heckerman, D., Kadie, C., Listgarten, J.: Leveraging information across HLA alleles/supertypes improves epitope prediction. J. Comput. Biol. 14(6), 736–746 (2007)

    Article  Google Scholar 

  14. Jacob, L., Vert, J.: Efficient peptide-MHC-I binding prediction for alleles with few known binders. Bioinformatics (Oxford, England) 24(3), 358–366 (2008)

    Google Scholar 

  15. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: Lp-norm multiple kernel learning. J. Mach. Learn. Res. 12, 953–997 (2011)

    MathSciNet  Google Scholar 

  16. Lanckriet, G., Cristianini, N., Ghaoui, L.E., Bartlett, P., Jordan, M.I.: Learning the kernel matrix with semi-definite programming. JMLR 5, 27–72 (2004)

    MATH  Google Scholar 

  17. Mordelet, F., Vert, J.: Prodige: prioritization of disease genes with multitask machine learning from positive and unlabeled examples. BMC Bioinf. 22, 389 (2011)

    Article  Google Scholar 

  18. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2009)

    Article  Google Scholar 

  19. Park, C., Hess, D., Huttenhower, C., Troyanskaya, O.: Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components. PLoS Comput. Biol. 6(11), e1001,009 (2010)

    Google Scholar 

  20. Schweikert, G., Widmer, C., Schölkopf, B., Rätsch, G.: An empirical analysis of domain adaptation algorithms for genomic sequence analysis. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems (NIPS), Vancouver, vol. 21, pp. 1433–1440 (2009)

    Google Scholar 

  21. Sonnenburg, S., Zien, A., Rätsch, G.: ARTS: accurate recognition of transcription starts in human. Bioinformatics 22(14), e472–e480 (2006)

    Article  Google Scholar 

  22. Sriperumbudur, B., Gretton, A., Fukumizu, K., Lanckriet, G., Schölkopf, B.: Injective Hilbert space embeddings of probability measures. In: Servedio, R.A., Zhang, T. (eds.) Proceedings of the 21st Annual Conference on Learning Theory, Helsinki, pp. 111–122. Omnipress (2008)

    Google Scholar 

  23. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  24. Widmer, C., Rätsch, G.: Multitask learning in computational biology. In: JMLR W&CP. ICML 2011 Unsupervised and Transfer Learning Workshop, Bellevue, vol. 27, pp. 207–216 (2012)

    Google Scholar 

  25. Widmer, C., Leiva, J., Altun, Y., Rätsch, G.: Leveraging sequence classification by taxonomy-based multitask learning. In: Berger, B. (ed.) Research in Computational Molecular Biology, Lisbon, pp. 522–534. Springer (2010)

    Google Scholar 

  26. Widmer, C., Toussaint, N., Altun, Y., Rätsch, G.: Inferring latent task structure for multitask learning by multiple kernel learning. BMC Bioinf. 11(Suppl 8), S5 (2010)

    Article  Google Scholar 

  27. Zhang, Y., Yeung, D.: A convex formulation for learning task relationships in multi-task learning. In: Proceedings of the 26th Annual Conference on Uncertainty in Artificial Intelligence (UAI-10), Catalina Island, pp. 733–742. AUAI Press, Corvallis (2010)

    Google Scholar 

Download references

Acknowledgements

We thank Klaus-Robert Müller and Mehryar Mohri for inspiring and helpful discussions. This work was supported by the German Research Foundation (DFG) under MU 987/6-1 and RA 1894/1-1 as well as by the European Community’s 7th Framework Programme under the PASCAL2 Network of Excellence (ICT-216886). Marius Kloft acknowledges a postdoctoral fellowship by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Widmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Widmer, C., Kloft, M., Rätsch, G. (2013). Multi-task Learning for Computational Biology: Overview and Outlook. In: Schölkopf, B., Luo, Z., Vovk, V. (eds) Empirical Inference. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41136-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41136-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41135-9

  • Online ISBN: 978-3-642-41136-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics