Skip to main content

Phenomenological Yield and Failure Criteria

  • Chapter
  • First Online:
Plasticity of Pressure-Sensitive Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Models for isotropic materials based on the equivalent stress concept are discussed. At first, so-called classical models which are useful in the case of absolutely brittle or ideal ductile materials are presented. Tests for basic stress states are suggested. At second, standard models describing the intermediate range between the absolutely brittle and ideal-ductile behavior are introduced. Any criterion is expressed by various mathematical equations formulated, for example, in terms of invariants. At the same time the criteria can be visualized which simplifies the application. At third, in the main part pressure-insensitive, pressure-sensitive and combined models are separated. Fitting methods based on mathematical, physical and geometrical criteria are necessary. Finally, three examples (gray cast iron, poly(oxymethylene) (POM) and poly(vinyl chloride) (PVC) hard foam) demonstrates the application of different approaches in modeling certain limit behavior. Two appendices are necessary for a better understanding of this chapter: in Chap. 2 applied invariants are briefly introduced and a table of discussed in this chapter criteria with references is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This criterion was also formulated 1865 in a letter of Maxwell to Lord Kelvin [204].

  2. 2.

    Note that in material testing another definition of basic tests is given [32].

  3. 3.

    Here the substitution \(I_3'= \frac{2\,\sqrt{3}}{3^2}\,(I_2')^{3/2}\) is used, which corresponds to the meridian with the angle \(\theta =0\) (Sect. 8.2). The point \(Z\) (tension) belongs to this meridian (Table 1).

  4. 4.

    This hypothesis is analyzed in [38, 65, 94, 220, 221]. It does not reflect the experimental results [22, 50, 78, 157, 213] and is used in combinations of various hypotheses (Sect. 11).

  5. 5.

    In the original papers the following definition of the stress angle is used

    $$\begin{aligned} \sin 3\varphi = - \frac{3\sqrt{3}}{2}\frac{I_3'(\pmb s)}{I'_2(\pmb s)^{3/2}}, \qquad |\varphi |\le \frac{\pi }{6}. \end{aligned}$$
  6. 6.

    This model is dedicated to Jurij Antonovič Radcig (1900–1976), who was a professor at the Kazan State University of Technology (KAI), Kazan, Russia.

  7. 7.

    Theory of elasticity with different Young’s moduli \(E_+\ne E_-\) and elastic Posisson’s ratios \(\nu _+^{\mathrm {el}}\ne \nu _-^{\mathrm {el}}\) at tension and compression [9, 212]

  8. 8.

    3.08 % total C, 2.04 % Si, 0.56 % Mn, 0.112 % S, 0.33 % P

References

  1. Alpa, G.: On a statistical approach to brittle rupture for multiaxial states of stress. Eng. Fract. Mech. 19(5), 881–901 (1984)

    Google Scholar 

  2. Altenbach, H.: Criterion with application to strength, yielding, and damage of isotropic materials. In: Lemaitre, J. (ed.) Handbook of Materials Behavior Models, pp. 175–186. Academic Press, San Diego (2001a)

    Google Scholar 

  3. Altenbach, H.: A nonclassical model for creep-damage processes. Mater. Phys. Mech. 3, 25–35 (2001b)

    Google Scholar 

  4. Altenbach, H.: Strength hypotheses—a never ending story. Czasopismo Techniczne (Techn Trans) Politechniki Krakowkiej 107(20), 5–15 (2010)

    Google Scholar 

  5. Altenbach, H.: Kontinuumsmechanik - Eine elementare Einführung in die materialunabhängigen und materialabhängigen Gleichungen. Springer Vieweg, Heidelberg (2012)

    Google Scholar 

  6. Altenbach, H., Kolupaev, V.A.: Fundamental forms of strength hypotheses. In: Indeitcev, D.A., Krivtsov, A.M. (eds.) Proceedings of XXXVI Summer School Advanced Problems in Mechanics, Institute for Problems in Mechanical Engineering, pp. 32–45. RAS, St. Petersburg (2009)

    Google Scholar 

  7. Altenbach, H., Lauschke, U., Zolochevsky, A.: Ein verallgemeinertes Versagenskriterium und seine Gegenüberstellung mit Versuchsergebnissen. ZAMM 73(4–5), T 372-T 375 (1993)

    Google Scholar 

  8. Altenbach, H., Altenbach, J., Zolochevsky, A.: Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart (1995)

    Google Scholar 

  9. Ambarcumyan, S.A.: Multimodulus Elasticity Theory (in Russ.: Raznomodul’naja teorija uprugosti). Nauka, Moscow (1982)

    Google Scholar 

  10. Andrew, W.: The effect of creep and other time related factors on plastics and elastomers, vol. I. Book B, New York (1991)

    Google Scholar 

  11. Annin, B.D.: Theory of ideal plasticity with a singular yield surface. J. Appl. Mech. Tech. Phys. 40(2), 347–353 (1999)

    MathSciNet  Google Scholar 

  12. de Araújo, F.C.: Elasticidade e plasticidade. Imprensa Portuguesa, Porto (1961)

    Google Scholar 

  13. Argon, A., Andrews, R., Godrick, J., Whitney, W.: Plastic deformation bands in glassy polystyrene. J. Appl. Phys. 39(3), 1899–1906 (1968)

    Google Scholar 

  14. Aubertin, M., Simon, R.: Un critère de rupture multiaxial pour matériaux fragiles. Can. J. Civ. Eng. 25(2), 277–290 (1998)

    Google Scholar 

  15. Bach, C.: Elastizität und Festigkeit. Springer, New York (1902)

    Google Scholar 

  16. Backhaus, G.: Deformationsgesetze. Akademie-Verlag, Berlin (1983)

    Google Scholar 

  17. Balandin, P.P.: On the strength hypotheses (in Russ.: K voprosu o gipotezakh prochnosti). Vestnik inzhenerov i tekhnikov 1, 19–24 (1937)

    Google Scholar 

  18. Bardenheier, R.: Mechanisches Versagen von Polymerwerkstoffen: Anstrengungsbewertung mehrachsialer Spannungszustände. Hanser, München (1982)

    Google Scholar 

  19. Bauwens, J.: Yield condition and propagation of Lüders’ lines in tension-torsion experiments on poly (vinyl chloride). J. Polym. Sci., Part A-2: Polym. Phys. 8(6), 893–901 (1970)

    Google Scholar 

  20. Becker, W., Gross, D.: Mechanik elastischer Körper und Strukturen. Springer, Berlin (2002)

    Google Scholar 

  21. Beltrami, E.: Sulle condizioni di resistenza dei corpi elastici. Il Nuovo Cimento 18(1), 145–155 (1885)

    Google Scholar 

  22. Belyaev, N.M.: Strength of Materials. Mir Publ, Moscow (1979)

    Google Scholar 

  23. Betten, J.: Kontinuumsmechanik, 2nd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  24. Betten, J.: Creep Mechanics. Springer Verlag, Berlin (2008)

    Google Scholar 

  25. Betten, J., Borrmann, M.: Der Poynting-Effekt als Ursache einer werkstoffbedingten Anisotropie. Forsch. Ingenieurwes. 54(1), 16–18 (1988)

    Google Scholar 

  26. Bigoni, D., Piccolroaz, A.: Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 41(11), 2855–2878 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Billington, E.W.: The Poynting-Swift effect in relation to initial and post-yield deformation. Int. J. Solids Struct. 21(4), 355–371 (1985)

    MATH  Google Scholar 

  28. Billington, E.W.: Introduction to the Mechanics and Physics of Solids. Adam Hilger Ltd., Bristol (1986a)

    MATH  Google Scholar 

  29. Billington, E.W.: The Poynting-Swift effect. Acta Mech. 58, 19–31 (1986b)

    MATH  Google Scholar 

  30. Birger, I.A.: On a criterion for fracture and plasticity (in Russ.: Ob odnom kriterii razrushenija i plastichnosti). Mechanika tverdogo tela, Izvestija Akademii Nauk SSSR 4, 143–150 (1977)

    Google Scholar 

  31. Birger, I.A., Shopp, B.F., Iosilevich, G.B.: Strength Computations for Machine Components (in Russ.: Raschet na prochnost’ detalej mashin, Spravochnik). Mashinostroenie, Moscow (1993)

    Google Scholar 

  32. Blumenauer, H.: Werkstoffprüfung. Dt. Verl. für Grundstoffindustrie, Leipzig (1996)

    Google Scholar 

  33. Bolchoun, A., Kolupaev, V.A., Altenbach, H.: Convex and non-convex flow surfaces (in German: Konvexe und nichtkonvexe Fließflächen). Forsch. Ingenieurwes. 75(2), 73–92 (2011)

    Google Scholar 

  34. Brencich, A., Gambarotta, L.: Isotropic damage model with different tensile-compressive response for brittle materials. Int. J. Solids Struct. 38(34), 5865–5892 (2001)

    MATH  Google Scholar 

  35. Burzyński, W.: Studjum nad hipotezami wytężenia. Akademia Nauk Technicznych, Lwów (1928)

    Google Scholar 

  36. Burzyński, W.: Über die Anstrengungshypothesen. Schweizerische Bauzeitung 94(21), 259–262 (1929a)

    Google Scholar 

  37. Burzyński, W.: Über die Anstrengungshypothesen. Schweizerische Bauzeitung 95(7), 87–88 (1929b)

    Google Scholar 

  38. Burzyński, W.: Theoretical foundations of the hypotheses of material effort. Eng. Trans. Pol. Acad. Sci. 56(Special Issue), 9–45 (2008)

    Google Scholar 

  39. Burzyński, W.: Selected passages from Włodzimierz Burzyński’s doctoral dissertation “Study on material effort hypotheses” printed in Polish by the Academy of Technical Sciences, Lwów, 1928, 1–192. Eng. Trans. Pol. Acad. Sci. 57(3–4), 127–157 (2009)

    Google Scholar 

  40. Candland, C.T.: Implications of macroscopic failure criteria which are independent of hydrostatic stress. Int. J. Fract. 11(3), 540–543 (1975)

    Google Scholar 

  41. Cardarelli, F.: Materials Handbook: A Concise Desktop Reference, 2nd edn. Springer, London (2008)

    Google Scholar 

  42. Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, New York (1988)

    MATH  Google Scholar 

  43. Chen, W.F., Zhang, H.: Structural Plasticity—Theory, Problems, and CAE Software. Springer, New York (1991)

    Google Scholar 

  44. Chong, E.K.P., Zak, S.H.: An Introduction to Optimization. Wiley, Hoboken, NJ (2008)

    MATH  Google Scholar 

  45. Christensen, R.M.: The Theory of Materials Failure. University Press, Oxford (2013)

    Google Scholar 

  46. Christensen, R.M., Freeman, D.C., DeTeresa, S.J.: Failure criteria for isotropic materials, applications to low-density types. Int. J. Solids Struct. 39(4), 973–982 (2002)

    MATH  Google Scholar 

  47. Coffin, L., Schenectady, N.: The flow and fracture of a brittle material. J. Appl. Mech. 17, 233–248 (1950)

    Google Scholar 

  48. Coulomb, C.A.: Essai sur une application des regles des maximis et minimis a quelquels problemes de statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav. 7, 343–387 (1776)

    Google Scholar 

  49. Cowan, H.J.: The strength of plain, reinforced and prestressed concrete under the action of combined stresses, with particular reference to the combined bending and torsion of rectangular sections. Mag. Concr. Res. 5(14), 75–86 (1953)

    Google Scholar 

  50. Darkov, A., Shpiro, G.: Strength of Materials (in Russ.: Soprotivlenie materialov). Visshaja Shkola, Moscow (1965)

    Google Scholar 

  51. Desai, C.S.: A general basis for yield, failure and potential functions in plasticity. Int. J. Numer. Anal. Meth. Geomech. 4(4), 361–375 (1980)

    Google Scholar 

  52. Diabgroup (2011) Technical manual, divinicell h. Tech. rep., www.diabgroup.com, Hemmingen

    Google Scholar 

  53. Dodd, B., Naruse, K.: Limitation on isotropic yield criteria. Int. J. Mech. Sci. 31(7), 511–519 (1989)

    MATH  Google Scholar 

  54. Drucker, D.C.: Stress-strain relations for strain hardening materials: Discussion and proposed experiments. In: Reissner E., Prager W., Stoker R.R. (eds.) Non-Linear Problems in Mechanics of Continua. Brown University. Proceedings of the First Symposium in Applied Mathematics, American Mathematical Society, vol. 1, PP. 181–187. New York (1949)

    Google Scholar 

  55. Drucker, D.C.: Limit analysis of two and three dimensional soil mechanics problems. J. Mech. Phys. Solids 1(4), 217–226 (1953)

    Google Scholar 

  56. Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10, 157–165 (1952)

    MathSciNet  MATH  Google Scholar 

  57. Edelman, F., Drucker, D.C.: Some extensions of elementary plasticity theory. J. Franklin Inst. 251(6), 581–605 (1951)

    MathSciNet  Google Scholar 

  58. Ehrenstein, G.W.: Mit Kunststoffen konstruieren. Hanser, München (1995)

    Google Scholar 

  59. Elias, H.G.: Makromoleküle: Physikalische Strukturen und Eigenschaften, vol. 2. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  60. Ely, R.: Biaxial stress testing of acrylic tube specimens. Polym. Eng. Sci. 7(1), 40–44 (1967)

    Google Scholar 

  61. Eschenauer, H., Olhoff, N., Schnell, W.: Applied Structural Mechanics: Fundamentals of Elasticity, Load-bearing Structures, Structural Optimization. Springer, Berlin (1997)

    Google Scholar 

  62. Feodosiev, V.I.: Ten Lectures-Discussions of the Strength Theory (in Russ.: Desjat’ lekzij-besed po soprotivleniju materialov). Nauka, Moscow (1975)

    Google Scholar 

  63. Filin, A.P.: Applied Mechanics of Solid Deformable Bodies (in Russ.: Prikladnaja mechanika tverdogo deformiruemogo tela), vol. 1. Nauka, Moscow (1975)

    Google Scholar 

  64. Filonenko-Borodich, M.M.: Theory of Elasticity. P. Noordhoff W. N, Groningen (1960)

    Google Scholar 

  65. Filonenko-Boroditsch, M.M.: Festigkeitslehre, vol. 1. Technik, Berlin (1960)

    Google Scholar 

  66. Finnie, I., Heller, W.R.: Creep of Engineering Materials. McGraw-Hill, New York (1959)

    Google Scholar 

  67. Föppl, A., Föppl, L.: Drang und Zwang: Eine höhrere Festigkeitslehre für Ingenieure. R. Oldenbourg, München (1920)

    Google Scholar 

  68. Freudenthal, A., Gou, R.: Second order effects in the theory of plasticity. Acta Mech. 8(1), 34–52 (1969)

    MATH  Google Scholar 

  69. Freudenthal, A.M.: Constitutive equations of rock with shear dilatancy. Tech. Rep. AD-AOll 402, DTIC Document (1975)

    Google Scholar 

  70. Fridman, Y.B.: Unified Theory of Strength (in Russ.: Edinaya teorija prochnosti). Oborongiz, Moscow (1943)

    Google Scholar 

  71. Fromm, H.: Grenzen des elastischen Verhaltens beanspruchter Stoffe. In: Auerbach F, Hort W. (eds.) Statik und Dynamik elastischer Körper nebst Anwendungsgebieten. II. Teil. Zum Gebrauch für Ingenieure, Physiker und Mathematiker, vol. 4, pp. 359–435. Verlag von Barth, J.A., Leipzig (1931)

    Google Scholar 

  72. Gdoutos, E.E.: Failure of cellular foams under multiaxial loading. Compos. A 33, 163–176 (2002)

    Google Scholar 

  73. Geniev, G.A., Kissjuk, V.N., Tjupin, G.A.: Plasticity Theory for Concrete and Reinforced Concrete (in Russ.: Teorija plastichnosti betona i zhelezhobetona). Strojizdat, Moscow (1974)

    Google Scholar 

  74. Gol’denblat, I.I., Kopnov, V.A.: Yield and Strength Criteria for Structural Materials (in Russ.: Kriterii prochnosti i plastichnosti konstrukzionnych materialov). Mashinostroenie, Moscow (1968)

    Google Scholar 

  75. Göldner, H., Holzweißig, F.: Leitfaden der Technischen Mechanik: Statik, Festigkeitslehre, Kinematik. Dynamik, Fachbuchverlag, Leipzig (1989)

    Google Scholar 

  76. Gollub, W.: Grenzen und Möglichkeiten der Mohr-Coulombschen Bruchbedingung, 18: Mechanik/Bruchmechanik, vol. 68. VDI, Düsseldorf (1989)

    Google Scholar 

  77. Grashof, F.: Theorie der Elasticität und Festigkeit. Gaertner, Berlin (1878)

    Google Scholar 

  78. Gross, D., Seelig, T.: Fracture Mechanics: with an Introduction to Micromechanics. Springer, Berlin (2011)

    Google Scholar 

  79. Gummert, P., Reckling. K.A.: Computation of the Bearing Capacity of Structures by the Method of Limiting Equilibrium (in Russ.: Raschet nesushej sposobnosti konstrukzij po metody predel’nogo ravnovesija). Strohizdat, Moscow (1949)

    Google Scholar 

  80. Haigh, B.P.: The strain-energy function and the elastic limit. Engineering 109, 158–160 (1920)

    Google Scholar 

  81. Häusler, O., Tsakmakis, C.: Torsion eines Kreiszylinders bei großen Deformationen und inkompressiblem Materialverhalten. Forschungszentrum Karlsruhe GmbH, Karlsruhe (1995)

    Google Scholar 

  82. Hayhurst, D.R.: Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids 20(6), 381–390 (1972)

    Google Scholar 

  83. Haythornthwaite, R.M.: Mechanics of triaxial tests for soil. Proc. ASCE J. Soil Mech. Found. Div. 86(SM5), 35–62 (1960)

    Google Scholar 

  84. Haythornthwaite, R.M.: Range of yield condition in ideal plasticity. Proc. ASCE J. Eng. Mech. Div. 87(EM6), 117–133 (1961)

    Google Scholar 

  85. Hencky, H.: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. ZAMM 4(4), 323–334 (1924)

    Google Scholar 

  86. Hencky, H.: Ermüdung, Bruch, Plastizität. Stahlbau 16(23/24), 95–97 (1943)

    Google Scholar 

  87. Hill, R.: On the inhomogeneous deformation of a plastic lamina in a compression test. Phil. Mag. Series 7 41(319), 733–744 (1950)

    Google Scholar 

  88. Hoffman, O., Sachs, G.: Introduction to the Theory of Plasticity for Engineers. McGraw-Hill, New York (1953)

    Google Scholar 

  89. Holzmann, G., Meyer, H., Schumpich, G.: Technische Mechanik Festigkeitslehre. Springer, Vieweg, Wiesbaden (2012)

    Google Scholar 

  90. Hu, W., Wang, Z.R.: Multiple-factor dependence of the yielding behavior to isotropic ductile materials. Comput. Mater. Sci. 32(1), 31–46 (2005)

    Google Scholar 

  91. Huber, M.T.: Specific strain work as a measurment of material effort (in Polish: Właściwa praca odkształcenia jako miara wytężenia materyału). Czasopismo Techniczne 22, 34–40, 49–50, 61–62, 80–81 (1904)

    Google Scholar 

  92. Ishlinsky, A.Y.: Hypothesis of strength of shape change (in Russ.: Gipoteza prochnosti formoizmenenija). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika 46, 104–114 (1940)

    Google Scholar 

  93. Ishlinsky, A.Y., Ivlev, D.D.: Mathematical Theory of Plasticity (in Russ.: Matematicheskaja teorija plastichnosti). Fizmatlit, Moscow (2003)

    Google Scholar 

  94. Ismar, H., Mahrenholtz, O.: Über Beanspruchungshypothesen für metallische Werkstoffe. Konstruktion 34, 305–310 (1982)

    Google Scholar 

  95. Issler, L., Ruoß, H., Häfele, P.: Festigkeitslehre - Grundlagen. Springer, Berlin (2006)

    Google Scholar 

  96. Ivlev, D.D.: On the development of a theory of ideal plasticity. J. Appl. Math. Mech. 22(6), 1221–1230 (1958)

    MathSciNet  MATH  Google Scholar 

  97. Ivlev, D.D.: The theory of fracture of solids. J. Appl. Math. Mech. 23(3), 884–895 (1959)

    MathSciNet  MATH  Google Scholar 

  98. Ivlev, D.D.: On extremal properties of the yield criteria (in Russ.: Ob ekstremal’nych svojstvach uslovij plastichnosti). J. Appl. Math. Mech. 5, 1439–1446 (1960)

    Google Scholar 

  99. Ivlev, D.D.: Theory of Ideal Plasticity (in Russ.: Teorija idealnoj plastichnosti). Nauka, Moscow (1966)

    Google Scholar 

  100. Ivlev, D.D.: Theory of Limit State and Ideal Plasticity (in Russ.: Teorija predel’nogo sostojanija i ideal’noj plastichnosti). Voronezhskij Gosudarstvennyj Universitet, Voronezh (2005)

    Google Scholar 

  101. Kłębowski, Z.: Obecny stan wytrzymałościowego obliczenia materiałów o własnościach uogólnionych; uogólnione obliczenie osiowo symetrycznego cienkościennego naczynia pod ciśnieniem. Przegląd Techniczny 11, 7–31 (1934)

    Google Scholar 

  102. Ko, W.L.: Application of the finite elastic theory to the behavior of rubberlike materials. Ph.D. thesis, California Institute of Technology, Pasadena (1963)

    Google Scholar 

  103. Kolupaev, V.A.: 3D-Creep Behaviour of Parts Made of Non-Reinforced Thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg, Halle (2006)

    Google Scholar 

  104. Kolupaev, V.A., Altenbach, H.: Application of the generalized model of Mao-Hong Yu to plastics (in German: Anwendung der Unified Strength Theory (UST) von Mao-Hong Yu auf unverstärkte Kunststoffe. In: Grellmann, W. (ed.) Martin-Luther-Universität Halle-Wittenberg, vol. 12, pp. 320–339. Merseburg, Tagung Deformations- und Bruchverhalten von Kunststoffen (2009)

    Google Scholar 

  105. Kolupaev, V.A., Altenbach, H.: Considerations on the unified strength theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu). Forsch. Ingenieurwes. 74(3), 135–166 (2010)

    Google Scholar 

  106. Kolupaev, V.A., Altenbach, H.: Consistent view of generalised yield surfaces. In: Khan, A.S. (ed.) 18th International Symposium on Plasticity & Its Current Applications—Non-linear Response of Conventional & Advanced Materials, and Multi-scale Modeling, pp. 76–78. Neat Press, Fulton MD (2011)

    Google Scholar 

  107. Kolupaev, V.A., Bolchoun, A.: Combined yield and fracture criteria (in German: Kombinierte Fließ- und Grenzbedingungen). Forsch. Ingenieurwes. 72(4), 209–232 (2008)

    Google Scholar 

  108. Kolupaev, V.A., Kraatz, A., Moneke, M., Bolchoun, A.: Description of the multiaxial creep for hard foams (in German: Beschreibung der mehraxialen Kriechphänomene bei Hartschaumstoffen). Kautschuk, Gummi, Kunststoffe 59(1–2), 17–27 (2006)

    Google Scholar 

  109. Kolupaev, V.A., Bolchoun, A., Moneke, M.: Computation of the Poisson’s ratio for the hardening of thermoplastics (in German: Ermittlung der Querkontraktionszahl bei der Verfestigung von Thermoplasten). In: Grellmann, W. (ed.) Martin-Luther-Universität Halle-Wittenberg, vol. 11, pp. 375–385. Merseburg, Tagung Deformations- und Bruchverhalten von Kunststoffen (2007)

    Google Scholar 

  110. Kolupaev, V.A., Bolchoun, A., Altenbach, H.: New trends in application of strength hypotheses (in German: Aktuelle Trends beim Einsatz von Festigkeitshypothesen). Konstruktion 5, 59–66 (2009a)

    Google Scholar 

  111. Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Unified representation and evaluation of the strength hypotheses. In: Elboujdaini M., Tyson B., Patnaik P. (eds.) 12th International Conference on Fracture ICF 12, p. 10. Ottawa (2009b)

    Google Scholar 

  112. Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Testing of multi-axial strength behavior of hard foams. In: Brémand, F. (ed.) ICEM 14–14th International Conference on Experimental Mechanics, 4–9 July, EPJ Web of Conferences 6, 16003 (2010), 8 p. Poitiers, France (2010)

    Google Scholar 

  113. Kolupaev, V.A., Mohr-Matuschek, U., Altenbach. H.: Application of strength hypotheses for POM (in German: Anwendung von Festigkeitshypothesen an POM). In: Radusch H.J., Fiedler L. (eds.) 14. International Scientific Conference on Polymeric Materials P.2010, 15. - 17. September, Martin-Luther-Universität Halle-Wittenberg, p. 12. Halle (Saale) (2010b)

    Google Scholar 

  114. Kolupaev, V.A., Bolchoun, A., Altenbach. H.: Strength hypothesis applied to hard foams. Appl. Mech. Mater. (Advances in Experimental Mechanics VIII) 70, 99–104 (2011)

    Google Scholar 

  115. Kolupaev, V.A., Yu, M.H., Altenbach, H.: Visualisation of the unified strength theory. Arch. Appl. Mech. (2013a). doi:10.1007/s00419-013-0735-8

  116. Kolupaev, V.A., Yu, M.H., Altenbach, H.: Yield criteria of hexagonal symmetry in the \(\pi \)-plane. Acta Mech. (2013b). doi:10.1007/s00707-013-0830-5

  117. Koval’chuk, B.I.: On the criterion for limit state of some hull steels under complex loading states at normal and above-normal temperatures (in Russ.: O kriterii predel’nogo sostojanija nekotorich korpusnich stalej v uslovijach slozhnogo naprjazhennogo sostojanija pri kompatnoj i povishennich temperaturach). Problemi Prochnosti 5, 10–15 (1981)

    Google Scholar 

  118. Kuhn, P.: Grundzüge einer allgemeinen Festigkeitshypothese, Auszug aus Antrittsvorlesung des Verfassers vom 11. Juli, : Vom Konstrukteur und den Festigkeitshypothesen. Inst. für Maschinenkonstruktionslehre, Karlsruhe (1980)

    Google Scholar 

  119. Kunz, J., Michaeli, W., Herrlich, N., Land, W.: Kunststoffpraxis: Konstruktion. WEKA Media GmbH & Co, KG, Kissing (2002)

    Google Scholar 

  120. Lebedev, A.A.: Experimental study of long-term strength of chromium-nickel steel in biaxial tension (in Russ.: Eksperimental’nie issledovanija dlitel’noj prochnosti chromnikelevoj stali v uslovijakh dvustoronnego rastjazhenija). In: Thermal Strength of Materials and Structure Elements (in Russ.: Termoprochnost’ materialov i konstrukcionnykh elementov), vol. 3, pp. 77–83 . Naukova Dumka, Kiev (1965a)

    Google Scholar 

  121. Lebedev, A.A.: Generalized criterion for the fatigue strength (in Russ.: Obobshennij kriterij dlitel’noj prochnosti). In: Thermal Strength of Materials and Structure Elements (in Russ.: Termoprochnost’ materialov i konstrukcionnykh elementov), vol. 3, pp. 69–76. Naukova Dumka, Kiev (1965b)

    Google Scholar 

  122. Lebedev, A.A.: On a possible combination of a yield criterion with a criterion for brittle failure (in Russ.: O vozmozhnom sovmeshenii uslovij plastichnosti i khrupkogo razrushenija). Prikladnaja. Mechanika 4(8), 85–93 (1968)

    Google Scholar 

  123. Lebedev, A.A., Panchin, V.V.: Geometrical interpretation of the generalized criterion for the fatigue strength (in Russ.: Geometricheskaja interpretazija obobshennogo kriterija dlitel’noj prochnosti). In: Thermal Strength of Materials and Structure Elements (in Russ.: Termoprochnost’ materialov i konstrukcionnykh elementov), vol. 4, pp. 187–192. Naukova Dumka, Kiev (1967)

    Google Scholar 

  124. Lebedev, A.A., Koval’chuk, B.I., Giginjak, F.F., Lamashevsky, V.P.: Handbook of Mechanical Properties of Structural Materials at a Complex Stress State. Begell House, New York (2001)

    Google Scholar 

  125. Leckie, F.A., Hayhurst, D.R.: Constitutive equations for creep rupture. Acta Metall. 25, 1059–1070 (1977)

    Google Scholar 

  126. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  127. Leon, A.: Über die Rolle des Trennbruches im Rahmen der Mohrschen Anstrengungshypothese. Der Bauingenieur 31(32), 318–321 (1934)

    Google Scholar 

  128. Lequeu, P.H., Gilormini. P., Montheillet. F., Bacroix, B., Jonas, J.J.: Yield surfaces for textured polycrystals. Acta Metall. 35(2), 439–451, 1159–1174 (1987)

    Google Scholar 

  129. Lüpfert, H.P.: Beurteilung der statischen Festigkeit und Dauerfestigkeit metallischer Werkstoffe bei mehrachsiger Beanspruchung. Deutscher Verlag für Grundstoffindustrie, Leipzig (1994)

    Google Scholar 

  130. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)

    Google Scholar 

  131. Maitra, M., Majumdar, K., Das, A.: Unified plastic yield criterion for ductile solids. AIAA Journal 11(10), 1428–1429 (1973)

    Google Scholar 

  132. Mālmeisters, A., Tamužs, V., Teters, G.: Mechanik der Polymerwerkstoffe. Akademie-Verlag, Berlin (1977)

    Google Scholar 

  133. Marciniak, Z.: Graphical representation of states of stress and strain. Arch. Mech. 3, 261–274 (1971)

    Google Scholar 

  134. Mariotte, M.: Traité du mouvement des eaux et des autres corps fluides. J. Jambert, Paris (1700)

    Google Scholar 

  135. Mendelson, A.: Plasticity: Theory and Application. Krieger, Malabar, Fla (1968)

    Google Scholar 

  136. Mendera, Z.: Wytężenie spoiny czołowej w interpretacji powierzchni granicznych. Przegla̧d Spawalnictwa SIMP XVIII(1), 6–13 (1966)

    Google Scholar 

  137. Miles, M., Mills, N.: The yield locus of polycarbonate. J. Polym. Sci.: Polym. Lett. Ed. 11(9), 563–568 (1973)

    Google Scholar 

  138. Mirolyubov, I.N.: On the generalization of the strengt theory based on the octaedral stresses in the case of brittle materials (in Russ.: K voprosu ob obobshenii teorii prochnosti oktaedticheskikh kasatelnyh naprjazhenij na khrupkie materialy). Trudy Leningradskogo Technologicheskogo Instituta pp 42–52 (1953)

    Google Scholar 

  139. von Mises, R.: Mechanik des festen Körpers im plastischen deformablen Zustand. Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse pp. 589–592 (1913)

    Google Scholar 

  140. von Mises, R.: Mechanik der plastischen Formänderung von Kristallen. ZAMM 8, 161–185 (1928)

    MATH  Google Scholar 

  141. Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Z VDI 45, 1524–1530 (1900a)

    Google Scholar 

  142. Mohr, O.: Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials. Z VDI 46, 1572–1577 (1900b)

    Google Scholar 

  143. Mohr, O.: Abhandlungen aus dem Gebiete der technischen Mechanik. Wilhelm & Sohn, Berlin (1914)

    Google Scholar 

  144. Müller, R.: Theoretische Untersuchung des Einflusses der Spannungskonzentration durch Kerben bei mehrachsiger Belastung. Ph.D., TH Karlsruhe, Karlsruhe (1987)

    Google Scholar 

  145. Murzewski, J., Mendera, Z.: Yield surface of steel determined by semi-empirical method. Bulletin de L’Academie Polonaise des Sciences, Serie des sciences, techniques XI(7), 35–42 (1963)

    Google Scholar 

  146. Navier, M.: De la resistance des corps solides. Dunand, Paris (1864)

    Google Scholar 

  147. Nayak, G., Zienkiewicz, O.: Convenient form of stress invariants for plasticity. In: Proceedings of the ASCE Journal of the Structural Division, vol. 98, pp. 949–953 (1972)

    Google Scholar 

  148. Novozhilov, V.: On the principles of the statical analysis of the experimental results for isotropic materials (in Russ.: O prinzipakh obrabotki rezultatov staticheskikh ispytanij izotropnykh materialov). Prikladnaja Matematika i Mechanika XV(6), 709–722 (1951a)

    Google Scholar 

  149. Novozhilov, V.V.: On the connection between stresses and strains in a nonlinear-elastic continuum (in Russ.: O svjazi mezhdu naprjazhenijami i deformazijami v nelinejno-uprugoj srede). Prikladnaja Matematika i Mechanika XV(2):183–194 (1951b)

    Google Scholar 

  150. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier Science, London (2005)

    Google Scholar 

  151. Pae, K.D.: The macroscopic yielding behaviour of polymers in multiaxial stress fields. J. Mater. Sci. 12, 1209–1214 (1977)

    Google Scholar 

  152. Papageorgiou, M.: Optimierung: statische, dynamische, stochastische Verfahren für die Anwendung. Oldenbourg, München (1996)

    MATH  Google Scholar 

  153. Paul, B.: A modification of the Coulomb-Mohr theory of fracture. J. Mater. Sci. Ser E 28(2), 259–268 (1961)

    Google Scholar 

  154. Paul, B.: Macroscopic plastic flow and brittle fracture. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, vol. II, pp. 313–496. Academic Press, New York (1968)

    Google Scholar 

  155. Pełczyński, T.: Wpływ stanu napięcia na przejście materiału w stan plastyczny. Przeglad Mechaniczny 7, 204–208 (1951)

    Google Scholar 

  156. Pisarenko, G.S., Lebedev. A.A.: Deformation and Fracture of Materials under Combined Stress (in Russ.: Soprotivlenie materialov deformirovaniju i razrusheniju pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev (1969)

    Google Scholar 

  157. Pisarenko, G.S., Lebedev, A.A.: Deformation and Strength of Materials under Complex Stress State (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev (1976)

    Google Scholar 

  158. Pęcherski, R.B., Szeptyński, P., Nowak, M.: An extension of Burzyński hypothesis of material effort accounting for the third invariant of stress tensor. Arch. Metall. Mater. 56(2), 503–508 (2011)

    Google Scholar 

  159. Poncelet, J.V.: Mécanique Industrielle. Meline, Bruxelles (1839)

    Google Scholar 

  160. Poynting, J.H.: On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. Ser. A 82(557), 546–559 (1909)

    MATH  Google Scholar 

  161. Poynting, J.H.: On the changes in the dimensions of a steel wire when twisted, and on the pressure of distortional waves in steel. Proc. R. Soc. Lond. Ser. A 86(590), 534–561 (1912)

    MATH  Google Scholar 

  162. Poynting, J.H., Thomson, J.J.: A Text-Book of Physics, Properties of Matter. Charles Griffin & Company, London (1927)

    Google Scholar 

  163. Prager, W., Hodge, P.: Theorie ideal plastischer Körper. Springer, Wien (1954)

    MATH  Google Scholar 

  164. Raghava, R., Caddell, R., Yeh, G.: The macroscopic yield behaviour of polymers. J. Mater. Sci. 8(2), 225–232 (1973)

    Google Scholar 

  165. Raniecki, B., Mróz, Z.: Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting sd effect. Acta Mech. 195, 81–102 (2008)

    MATH  Google Scholar 

  166. Rankine, W.J.M.: Manual of Applied Mechanics. Griffin, London (1876)

    Google Scholar 

  167. Reckling, K.: Plastizitätstheorie und ihre Anwendung auf Festigkeitsprobleme. Springer, Berlin (1967)

    MATH  Google Scholar 

  168. Reiner, M.: Deformation Strain and Flow. An Elementary Introduction to Rheology. H. K. Lewis & Co. Ltd., London (1960)

    Google Scholar 

  169. Reiner, M., Abir, D.: Second-Order Effects in Elasticity, Plasticity and Fluid Dynamics. Jerusalem Academic Press, Jerusalem (1964)

    MATH  Google Scholar 

  170. Résal, J.: Résistance des matériaux. Librairie polytechnique, Baudry & cie., Paris (1898)

    Google Scholar 

  171. Reuss, A.: Vereinfachte Beschreibung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließbedingung. ZAMM 13(5), 356–360 (1933)

    MATH  Google Scholar 

  172. Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials. vii. experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A243(865), 251–288 (1951)

    Google Scholar 

  173. Roscoe, K.H., Burland, J.B.: On the generalized stress-strain behaviour of ’wet’ clay. In: Heyman, J., Leckie, F.A. (eds.) Engineering Plasticity, Papers for Conference held in Cambridge, pp. 535–609. University Press, Cambridge March 1968

    Google Scholar 

  174. Sähn, S., Göldner, H., Fischer, K.F., Nickel, J.: Bruch- und Beurteilungskriterien in der Festigkeitslehre. Fachbuchverbuchverlag, Leipzig-Köln (1993)

    Google Scholar 

  175. de Saint-Venant, B.: Comptes rendus des séances de l’Académie des sciences (1871)

    Google Scholar 

  176. Sandel, G.D.: Über die Festigkeitsbedingungen: ein Beitrag zur Lösung der Frage der zulässigen Anstrengung der Konstruktionsmaterialen. Ph.D. thesis, TeH, Stuttgart (1919)

    Google Scholar 

  177. Sauter, J.: Neue und alte statische Festigkeitshypothesen. VDI, Reihe 1: Konstruktionstechnik / Maschinenelente Nr. 191, Düsseldorf (1990)

    Google Scholar 

  178. Sayir, M.: Zur Fließbedingung der Plastizitätstheorie. Ing. Arch. 39, 414–432 (1970)

    MATH  Google Scholar 

  179. Schleicher, F.: Der Spannungszustand an der Fließgrenze (Plastizitätsbedingung). Ztschr f Math und Mech 6(3), 199–216 (1926)

    MATH  Google Scholar 

  180. Schleicher, F.: Über die Sicherheit gegen Überschreiten der Fliessgrenze bei statischer Beanspruchung. Der Bauingenieur 9(15), 253–261 (1928)

    Google Scholar 

  181. Schlimmer, M.: Zeitabhängiges mechanisches Werkstoffverhalten: Grundlagen, Experimente. Rechenverfahren für die Praxis, Springer, Berlin (1984)

    Google Scholar 

  182. Schmidt, R.: Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ing. Arch. 3(3), 215–235 (1932)

    MATH  Google Scholar 

  183. Schneider, W.: Mikromechanische Betrachtung von Bruchkriterien unidirektional verstärkten Schichten aus Glasfaser\(/\)Kunststoff. Fachbereich Maschinenbau D 17, Technische Hochschule Darmstadt, Darmstadt (1974)

    Google Scholar 

  184. Schneider, W.: Versagenskriterien für Kunststoffe unter mehrachsiger Kurzzeitbeanspruchung. In: Belastungsgrenzen von Kunststoff-Bauteilen, pp. 81–105. VDI-Verlag GmbH, Düsseldorf (1975)

    Google Scholar 

  185. Schneider, W., Bardenheier, R.: Versagenskriterien für Kunststoffe. Zeitschrift für Werkstofftechnik (J of Materials Technology) 6(8), 269–280 (1975)

    Google Scholar 

  186. Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  187. Schreyer, H.: Smooth limit surfaces for metals, concrete, and geotechnical materials. J. Eng. Mech. 115(9), 1960–1975 (1989)

    Google Scholar 

  188. Schur, I., Grunsky, H.: Vorlesungen über Invariantentheorie: Die Grundlehren der mathematischen Wissenschaften in Einzelndarstellungen. Springer, Berlin (1968)

    Google Scholar 

  189. Schwartz, R., Dugger, J.: Shear strength of plastic materials. Mod. Plast. 21, 117–121, 164, 166 (1944)

    Google Scholar 

  190. Schwarzl, F., Stavermann, A.J.: Bruchspannung und festigkeit von hochpolymeren. In: Stuart, H. (ed.) Die Physik der Hochpolymeren: Theorie und Molekulare Deutung Technologischer Eigenschaften von Hochpolymeren Werkstoffen, vol. 4, pp. 165–176. Springer, Berlin (1964)

    Google Scholar 

  191. Sdobyrev, V.P.: Criterion for the long term strength of some heat-resistant alloys at a multiaxial loading (in Russ.: Kriterij dlitelnoj prochnosti dlja nekotorykh zharoprochnykh splavov pri slozhnom naprjazhennom sostojanii). Izvestija Akademii Nauk SSSR, Otdelenie tekhnicheskikh Nauk, Mechanika i Mashinostroenie 6, 93–99 (1959)

    Google Scholar 

  192. Shanley, F.R.: Strength of Materials. McGraw-Hill, New York (1957)

    Google Scholar 

  193. Shesterikov, S.A.: On the theory of ideal plastic solid (in Russ.: K postroeniju teorii ideal’no plastichnogo tela). Prikladnaja matematika i mechanika, Rossijskaja Akademija Nauk 24(3), 412–415 (1960)

    Google Scholar 

  194. Skrzypek, J.J.: Plasticity and Creep: Theory. CRC Press, Boca Raton, Examples and Problems (1993)

    MATH  Google Scholar 

  195. Sokolovsky, V.V.: Theory of Plasticity (in Russ.: Teorija plastichnosti). Gos. izd. tekhn.-teor. literatury, Moscow (1950)

    Google Scholar 

  196. Stadler, W.: Multicriteria Optimization in Engineering and the Sciences. Mathematical Concepts and Methods in Science and Engineering, vo. 37. Plenum Press, New York (1988)

    Google Scholar 

  197. Stepin, P.A.: Strength of Materials. Gordon & Breach, New York (1963)

    Google Scholar 

  198. Sternstein, S., Ongchin, L.: Yield criteria for plastic deformation of glassy high polymers in general stress fields. Div. Polym. Chem. 10, 1117–1121 (1969)

    Google Scholar 

  199. Stockton, F.D., Drucker, D.C.: Fitting mathematical theory of plasticity to experimental results. J. Colloid Sci. 5(3), 239–250 (1950)

    Google Scholar 

  200. Swift, H.W.: Plastic strain in an isotropic strain hardening material. Engineering: for innovators in technology, manufacturing and management 163, 381–389 (1946)

    Google Scholar 

  201. Tarasenko, I.I.: On the criteria of brittle strength of materials (in Russ.: O kriterijach khrupkoj prochnosti materialov). Sbornik nauchnykh trudov, Leningradskij inzhenerno-stroitelnij institut 26, 161–168 (1957)

    Google Scholar 

  202. Theocaris, P.: A general yield criterion for engineering materials, depending on void growth. Meccanica 21(2), 97–105 (1986)

    MathSciNet  Google Scholar 

  203. Thorkildsen, R.: Mechanical behaviour. In: Baer, E. (ed.) Engineering Design for Plastics, pp. 227–399. Reinhold, New York (1964)

    Google Scholar 

  204. Timoshenko, S.P.: History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structure. McGraw-Hill, New York (1953)

    Google Scholar 

  205. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1987)

    Google Scholar 

  206. Timoshenko, S.P., Young, D.H.: Elements of Strength of Materials. D. van Nostrand Company, Princeton (1962)

    Google Scholar 

  207. Torre, C.: Einfluss der mittleren Hauptnormalspannung auf die Fließ- und Bruchgrenze. Österreichisches Ingenieur-Archiv I(4/5), 316–342 (1947)

    MathSciNet  Google Scholar 

  208. Torre, C.: Grenzbedingung für spröden Bruch und plastisches Verhalten bildsamer Metalle. Österreichisches, Ingenieur-Archiv IV(2):174–189 (1950)

    Google Scholar 

  209. Tresca, H.: Mémoire sur l’ecoulement des corps solides. Mémoires Pres par Div Savants 18, 733–799 (1868)

    Google Scholar 

  210. Tschoegl, N.W.: Failure surfaces in principial stress space. J. Polym. Sci., Part C: Polym. Symp. 32, 239–267 (1971)

    Google Scholar 

  211. Tsvelodub, I.Y.: Stability postulate and its applications in the creep theory for metallic materials (in Russ.: Postulat ustojchivosti i ego prilozhenija v teorii polzuchesti metallicheskich materialov). Institut Gidromechaniki, Novosibirsk (1991)

    Google Scholar 

  212. Tsvelodub, I.Y.: Multimodulus elasticity theory. J. Appl. Mech. Technical Phys. 49(1), 129–135 (2008)

    MathSciNet  MATH  Google Scholar 

  213. Vesik, S.: Handbook of Strength of Materials (in Russ.: Spravochnik po soprotivleniju materialov). Budivelnik, Kiev (1970)

    Google Scholar 

  214. Volkov, S.D.: Basics of the statistical theory of strength (in Russ.: Osnovy statisticheskoj teorii prochnosti). In: Ioffe, A.F., Kurdjymov, G.B., Zhurkov, S.N. (eds.) Nekotorye problemy prochnosti tverdogo tela, Izdatel’stvo Akademii Nauk SSSR, pp. 325–333. Leningrad, Moscow (1959)

    Google Scholar 

  215. Wack, B.: The torsion of a tube (or a rod): General cylindrical kinematics and some axial deformation and ratchet measurements. Acta Mech. 80(1), 39–59 (1989)

    Google Scholar 

  216. Wang, D.A., Pan, J.: A non-quadratic yield function for polymeric foams. Int. J. Plast. 22(3), 434–458 (2006)

    MathSciNet  MATH  Google Scholar 

  217. Weigler, H., Becker, G.: Über das Bruch- und Verformungsverhalten von Beton bei mehrachsiger Beanspruchung. Der Bauingenieur 36(10), 390–396 (1961)

    Google Scholar 

  218. Westergaard, H.M.: On the resitance of ductile materials to combined stress in two or three directions perpendicular to one another. J. Franklin Inst. 189, 627–640 (1920)

    Google Scholar 

  219. Williams, J.G.: Stress Analysis of Polymers. Longman, London (1973)

    Google Scholar 

  220. Yagn, Y.I.: New methods of strength prediction (in Russ.: Novye metody pascheta na prochnost’). Vestnik inzhenerov i tekhnikov 6, 237–244 (1931)

    Google Scholar 

  221. Yagn, Y.I.: Strength of Materials: Theory and Problems (in Russ.: Soprotivlenie materialov: teorja i zadachnik). Kubuch, Leningrad (1933)

    Google Scholar 

  222. Yu, M.H.: General behaviour of isotropic yield function (in Chinese). Scientific and Technological Research Paper of Xi’an Jiaotong University, pp 1–11 (1961)

    Google Scholar 

  223. Yu, M.H.: Brittle fracture and plastic yield criterion (in Chinese). Scientific and Technological Research Paper of Xi’an Jiaotong University, pp 1–25 (1962)

    Google Scholar 

  224. Yu, M.H.: Twin shear stress yield criterion. Int. J. Mech. Sci. 25(1), 71–74 (1983a)

    Google Scholar 

  225. Yu, M.H.: Twin shear stress yield criterion. Int. J. Mech. Sci. 25(11), 845–846 (1983b)

    Google Scholar 

  226. Yu, M.H.: Researches on the twin shear stress strength theory (in Chinese). Xi’an Jiaotong University Press, Xi’an (1988)

    Google Scholar 

  227. Yu, M.H.: Engineering Strength Theory (in Chinese). Higher Education Press, Beijing (1999)

    Google Scholar 

  228. Yu, M.H.: Advances in strength theories for materials under complex stress state in the 20th century. Appl. Mech. Rev. 55(5), 169–218 (2002)

    Google Scholar 

  229. Yu, M.H.: Unified Strength Theory and its Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  230. Yu, M.H., He, L., Song, L.: Twin shear stress theory and its generalization. Scientia Sinica, Series A-Mathematical, Physical, Astronomical and Technical Sciences 28(11), 1174–1183 (1985)

    Google Scholar 

  231. Zawadzki, J.: Ciśnienie zredukowane jako jeden z parametrów wytężenia (Przyrost właściwej energii swobodnej jako miara wytężenia). Rozprawy Inzynierskie LXXIII, 358–398 (1957)

    Google Scholar 

  232. Ziegler, H.: Zum plastischen Potential der Bodenmechanik. Z f angew Math und Phys 20, 659–675 (1969)

    MATH  Google Scholar 

  233. Zienkiewicz, O., Pande, G.: Some useful forms of isotropic yield surfaces for soil and rock mechanics. In: Gudehus, G. (ed.) Finite Elements in Geomechanics, pp. 179–198. John Wiley, London, New York (1977)

    Google Scholar 

  234. Źyczkowski, M.: Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publ, Warszawa (1981)

    MATH  Google Scholar 

  235. Zyczkowski, M.: Discontinuous bifurcations in the case of the Burzyński-Torre yield condition. Acta Mech. 132(1), 19–35 (1999)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altenbach, H., Bolchoun, A., Kolupaev, V.A. (2014). Phenomenological Yield and Failure Criteria. In: Altenbach, H., Öchsner, A. (eds) Plasticity of Pressure-Sensitive Materials. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40945-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40945-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40944-8

  • Online ISBN: 978-3-642-40945-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics