Skip to main content

Code Based Cryptography and Steganography

  • Conference paper
Algebraic Informatics (CAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8080))

Included in the following conference series:

Abstract

For a long time, coding theory was only concerned by message integrity (how to protect against errors a message sent via some noisely channel). Nowadays, coding theory plays an important role in the area of cryptography and steganography. The aim of this paper is to show how algebraic coding theory offers ways to define secure cryptographic primitives and efficient steganographic schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C., Meijer, H.: Security-related comments regarding McEliece’s public-key cryptosystem. IEEE Trans. Inform. Theory 35, 454–455 (1989)

    Article  MathSciNet  Google Scholar 

  2. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Ashikmin, A.E., Barg, A.: Minimal vectors in linear codes. IEEE Transaction on Information Theory 44(5) (1998)

    Google Scholar 

  4. Augot, D., Barbier, M., Couvreur, A.: List-decoding of binary goppa codes up to the binary johnson bound. In: IEEE, ITW 2011, pp. 229–233 (October 2011)

    Google Scholar 

  5. Augot, D., Finiasz, M., Gaborit, P., Manuel, S., Sendrier, N.: Sha-3 proposal: Fsb. Submission to NIST (2008)

    Google Scholar 

  6. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic hash functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 64–83. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosystem based on qc-ldpc codes. In: IEEE International Symposium on Information Theory, ISIT 2007, pp. 2591–2595 (June 2007)

    Google Scholar 

  8. Barg, S.: Some new NP-complete coding problems. Probl. Peredachi Inf. 30, 23–28 (1994)

    MathSciNet  Google Scholar 

  9. Barreto, P.S.L.M., Cayrel, P.-L., Misoczki, R., Niebuhr, R.: Quasi-dyadic CFS signatures. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 336–349. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the intractability of certain coding problems. IEEE Transactions on Information Theory 24(3), 384–386 (1978)

    Article  MATH  Google Scholar 

  14. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 134–152. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Bernstein, D.J.: Grover vs. McEliece (2008), http://cr.yp.to/papers.html

  16. Bernstein, D.J.: List decoding for binary goppa codes (2008), http://cr.yp.to/codes/goppalist-20081107.pdf

  17. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: Ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: Ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 143–158. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Beuchat, J.L., Sendrier, N., Tisserand, A., Villard, G.: Fpga implementation of a recently published signature scheme. Tech. Rep. 5158, Inria (March 2004)

    Google Scholar 

  22. Biswas, B., Sendrier, N.: McEliece cryptosystem implementation: Theory and practice. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 47–62. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Brickell, E., Odlyzko, A.: Cryptanalysis: A survey of recent results. In: Comtemporary Cryptology - the Science of Information Integrity, pp. 501–540 (1992)

    Google Scholar 

  24. Canteaut, A.: Attaques de cryptosystèmes à mots de poids faible et construction de fonctions t-résilientes. PhD thesis, Université Paris VI (1996)

    Google Scholar 

  25. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: Application to McEliece’s cryptosystem and to narrow-sense bch codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Canteaut, A., Sendrier, N.: Cryptanalysis of the original McEliece cryptosystem. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 187–199. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  27. Cayrel, P.-L., Dusart, P.: McEliece/niederreiter pkc: sensitivity to fault injection. In: International Workshop on Future Engineering, Applications and Services, FEAS (2010)

    Google Scholar 

  28. Cayrel, P.-L., El Yousfi Alaoui, S.M., Hoffmann, G., Véron, P.: An improved threshold ring signature scheme based on error correcting codes. In: Özbudak, F., Rodríguez-Henríquez, F. (eds.) WAIFI 2012. LNCS, vol. 7369, pp. 45–63. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Cayrel, P.-L., Gaborit, P., Girault, M.: Identity-based identification and signature schemes using correcting codes. In: Augot, D., Sendrier, N., Tillich, J.P. (eds.) WCC 2007. INRIA (2007)

    Google Scholar 

  30. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. Chabanne, H., Courteau, B.: Application de la méthode de décodage itérative d’omura à la cryptanalyse du système de mc eliece. Rapport de Recherche 122, Université de Sherbrooke (October 1993)

    Google Scholar 

  32. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. Crandall, R.: Some notes on steganography (1998), Posted on the steganography mailing list

    Google Scholar 

  34. Dallot, L.: Towards a concrete security proof of courtois, finiasz and sendrier signature scheme. In: Lucks, S., Sadeghi, A.-R., Wolf, C. (eds.) WEWoRC 2007. LNCS, vol. 4945, pp. 65–77. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  35. Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 222–235. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  36. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  37. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  38. Dowsley, R., Müller-Quade, J., Nascimento, A.C.A.: A CCA2 secure public key encryption scheme based on the McEliece assumptions in the standard model. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 240–251. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  39. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: Microeliece: Mceliece for embedded devices. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 49–64. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  40. El Yousfi Alaoui, S.M., Dagdelen, Ö., Véron, P., Galindo, D., Cayrel, P.-L.: Extended Security Arguments for Signature Schemes. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 19–34. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  41. Faugère, J.C., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher for high rate McEliece cryptosystems. IACR Eprint archive, 2010/331 (2010)

    Google Scholar 

  42. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  43. Finiasz, M.: Nouvelles constructions utilisant des codes correcteurs d’erreurs en cryptographie à clé publique. PhD thesis, Ecole Polytechnique (2004)

    Google Scholar 

  44. Finiasz, M.: Parallel-CFS: Strengthening the CFS McEliece-based signature scheme. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 159–170. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  45. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic hash function. In: ECRYPT Hash Workshop 2007 (2007)

    Google Scholar 

  46. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  47. Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as secure as syndrome decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  48. Fouque, P.-A., Leurent, G.: Cryptanalysis of a hash function based on quasi-cyclic codes. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 19–35. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  49. Fridrich, J.: Asymptotic behavior of the ZZW embedding construction. IEEE Transactions on Information Forensics and Security 4(1), 151–153 (2009)

    Article  Google Scholar 

  50. Fridrich, J., Goljan, M., Lisonek, P., Soukal, D.: Writing on wet paper. IEEE Trans. on Signal Processing 53(10), 3923–3935 (2005)

    Article  MathSciNet  Google Scholar 

  51. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications, 1st edn. Cambridge University Press, New York (2009)

    Google Scholar 

  52. Gaborit, P.: Shorter keys for code based cryptography. In: Proceeedings of WCC 2005, pp. 81–90 (2005)

    Google Scholar 

  53. Gaborit, P., Girault, M.: Lightweight code-based identification and signature. In: Proceeedings of ISIT 2007 (2007)

    Google Scholar 

  54. Gaborit, P., Laudauroux, C., Sendrier, N.: Synd: a fast code-based stream cipher with a security reduction. In: Proceeedings of ISIT 2007 (2007)

    Google Scholar 

  55. Gaborit, P., Zémor, G.: Asymptotic improvement of the gilbert-varshamov bound for linear codes. In: Proceeedings of ISIT 2006, pp. 287–291 (2006)

    Google Scholar 

  56. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  57. Gauthier Umana, V., Leander, G.: Practical key recovery attacks on two McEliece variants. IACR Eprint archive, 2009/509 (2009)

    Google Scholar 

  58. Gibson, J.K.: Equivalent goppa codes and trapdoors to McEliece’s public key cryptosystem. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 517–521. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  59. Girault, M.: A (non-practical) three-pass identification protocol using coding theory. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 265–272. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  60. Girault, M., Stern, J.: On the length of cryptographic hash-values used in identification schemes. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 202–215. Springer, Heidelberg (1994)

    Google Scholar 

  61. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM, Journal of Computing 18, 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  62. Goppa, V.D.: A new class of linear error correcting codes. Probl. Pered. Inform., 24–30 (1970)

    Google Scholar 

  63. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 212–219. ACM, New York (1996)

    Chapter  Google Scholar 

  64. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  Google Scholar 

  65. Harari, S.: A new authentication algorithm. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 91–105. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  66. Heyse, S., Moradi, A., Paar, C.: Practical power analysis attacks on software implementations of McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 108–125. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  67. Housley, R.: Using advanced encryption standard (aes) counter mode with ipsec encapsulating security payload (esp). RFC 3686, Network Working Group (January 2004)

    Google Scholar 

  68. Massey, J.L.: Minimal codewords and secret sharing. In: 6th Joint Swedish-Russian Workshop on Information Theory, pp. 276–279 (1993)

    Google Scholar 

  69. Johansson, T., Jönsson, F.: On the complexity of some cryptographic problems based on the general decoding problem. IEEE Transactions on Information Theory 48(10), 2669–2678 (2002)

    Article  MATH  Google Scholar 

  70. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  71. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Transactions on Information Theory 34(5), 1354–1359 (1988)

    Article  MathSciNet  Google Scholar 

  72. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and niederreiter’s public-key cryptosystems. IEEE Transactions on Information Theory 40(1), 271–273 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  73. Loidreau, P., Sendrier, N.: Weak keys in the McEliece public-key cryptosystem. IEEE Transactions on Information Theory 47(3), 1207–1211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  74. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Code. North-Holland (1977)

    Google Scholar 

  75. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\mathcal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  76. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report, pp. 114–116 (1978)

    Google Scholar 

  77. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Communications of the ACM 24(9), 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  78. Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Inform. Theory 24, 525–530 (1978)

    Article  Google Scholar 

  79. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from goppa codes. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  80. Molter, H., Stöttinger, M., Shoufan, A., Strenzke, F.: A simple power analysis attack on a McEliece cryptoprocessor. Journal of Cryptographic Engineering 1, 29–36 (2011)

    Article  Google Scholar 

  81. Munuera, C., Barbier, M.: Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications 6(3), 237–285 (2012)

    Article  MathSciNet  Google Scholar 

  82. Munuera, C.: Steganography from a coding theory point of view. Series on Coding Theory and Cryptology, vol. 8. World Scientific Publishing Co. Pte. Ltd. (2013)

    Google Scholar 

  83. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Problems Control Inform. Theory 15(2), 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  84. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece cryptosystem without random oracles. Designs, Codes and Cryptography 49, 289–305 (2008), doi:10.1007/s10623-008-9175-9

    Article  MathSciNet  MATH  Google Scholar 

  85. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems based on quasi-cyclic codes. Mathematics in Computer Science 3, 129–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. Peters, C.: Information-set decoding for linear codes over F q . In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  87. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. IT-8, 85–89 (1962)

    MathSciNet  Google Scholar 

  88. Quisquater, J.-J., Guillou, L.C., Berson, T.: How to explain zero-knowledge protocols to your children. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 628–631. Springer, Heidelberg (1990)

    Google Scholar 

  89. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 26(1), 96–99 (1983)

    Article  Google Scholar 

  90. Saarinen, M.-J.O.: Linearization attacks against syndrome based hashes. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 1–9. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  91. Sendrier, N.: Efficient generation of binary words of given weight. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 184–187. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  92. Sendrier, N.: On the structure of a randomly permuted concateneted code. In: EUROCODE 1994, 169–173. Inria (1994)

    Google Scholar 

  93. Sendrier, N.: Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Transactions on Information Theory 46(4), 1193–1203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  94. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  95. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  96. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 20–22 (1994)

    Google Scholar 

  97. Shoufan, A., Strenzke, F., Molter, H.G., Stöttinger, M.: A Timing Attack against Patterson Algorithm in the McEliece PKC. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 161–175. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  98. Sidelnikov, V., Shestakov, S.: On cryptosystems based on generalized reed-solomon codes. Diskretnaya Math. 4, 57–63 (1992)

    MathSciNet  Google Scholar 

  99. Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  100. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  101. Strenzke, F.: A smart card implementation of the McEliece PKC. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 47–59. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  102. Strenzke, F., Tews, E., Molter, H.G., Overbeck, R., Shoufan, A.: Side channels in the McEliece PKC. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 216–229. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  103. Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.: Further results on goppa codes and their applications to constructing efficient binary codes. IEEE Transactions on Information Theory 22, 518–526 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  104. van Tilburg, J.: On the McEliece public-key cryptosystem. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 119–131. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  105. Véron, P.: Cryptanalysis of harari’s identification scheme. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 264–269. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  106. Véron, P.: Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

    Article  Google Scholar 

  107. Véron, P.: Public key cryptography and coding theory. In: Woungang, I., Misra, S., Misra, S. (eds.) Selected Topics in Information and Coding Theory, vol. 7. World Scientific Publications (March 2010)

    Google Scholar 

  108. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  109. Westfeld, A.: F5-A steganographic algorithm. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Véron, P. (2013). Code Based Cryptography and Steganography. In: Muntean, T., Poulakis, D., Rolland, R. (eds) Algebraic Informatics. CAI 2013. Lecture Notes in Computer Science, vol 8080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40663-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40663-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40662-1

  • Online ISBN: 978-3-642-40663-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics