Skip to main content

Feasible Combinatorial Matrix Theory

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

  • 1378 Accesses

Abstract

We give the first, as far as we know, feasible proof of König’s Min-Max Theorem (KMM), a fundamental result in combinatorial matrix theory, and we show the equivalence of KMM to various Min-Max principles, with proofs of low complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni, R.: Menger’s theorem for graphs containing no infinite paths. European Journal of Combinatorics 4, 201–204 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brualdi, R.A., Ryser, H.J.: Combinatorial Matrix Theory. Cambridge University Press (1991)

    Google Scholar 

  3. Buss, S.R.: Bounded Arithmetic. Bibliopolis, Naples (1986)

    MATH  Google Scholar 

  4. Buss, S.R.: Axiomatizations and conservations results for fragments of Bounded Arithmetic. AMS Contemporary Mathematics 106, 57–84 (1990)

    Article  MathSciNet  Google Scholar 

  5. Cook, S.A., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge Univeristy Press (2010)

    Google Scholar 

  6. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51(1), 161–166 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  7. Everett, C.J., Whaples, G.: Representations of sequences of sets. American Journal of Mathematics 71(2), 287–293 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  8. Göring, F.: Short proof of Menger’s theorem. Discrete Mathematics 219, 295–296 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hall, P.: On representatives of subsets. In: Gessel, I., Rota, G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp. 58–62. Birkhäuser, Boston (1987)

    Google Scholar 

  10. Halmos, P.R., Vaughan, H.E.: The marriage problem. American Journal of Mathematics 72(1), 214–215 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lê, D.T.M., Cook, S.A.: Formalizing randomized matching algorithms. Logical Methods in Computer Science 8, 1–25 (2012)

    Article  Google Scholar 

  12. Menger, K.: Zur allgemeinen kurventheorie. Fund. Math. 10, 95–115 (1927)

    Google Scholar 

  13. Perles, M.A.: A proof of dilworth’s decomposition theorem for partially ordered sets. Israel Journal of Mathematics 1, 105–107 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pym, J.S.: A proof of Menger’s theorem. Monatshefte für Mathematik 73(1), 81–83 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Soltys, M., Cook, S.: The proof complexity of linear algebra. Annals of Pure and Applied Logic 130(1-3), 207–275 (2004)

    Article  MathSciNet  Google Scholar 

  16. Soltys, M.: Feasible proofs of Szpilrajn’s theorem: a proof-complexity framework for concurrent automata. Journal of Automata, Languages and Combinatorics (JALC) 16(1), 27–38 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, A.G., Soltys, M. (2013). Feasible Combinatorial Matrix Theory. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics