Skip to main content

Coupling Spectroscopic Ellipsometry and Quartz Crystal Microbalance to Study Organic Films at the Solid-Liquid Interface

  • Chapter
Ellipsometry of Functional Organic Surfaces and Films

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 52))

Abstract

Spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation monitoring (QCM-D) have become popular tools for the analysis of organic films, from a few Angstroms to a few micrometers in thickness, at the solid-liquid interface. Because of their different working principles, both techniques are highly complementary, providing insight into optical and mechanical properties, respectively. The combination of SE and QCM-D in one setup is not only attractive because this information becomes available at the same time on the same sample, but also because the correlation of SE and QCM-D responses can provide novel insight that is not accessible with either technique alone. Here, we discuss how the combined setup is implemented in practice and review current data analysis approaches that are useful with regard to the correlation of both methods. Particular attention is given to the novel insight that can be obtained by the combination of both techniques, such as the solvation, density and lateral organization of organic films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The software QTM is freely available for download (http://www2.pc.tu-clausthal.de/dj/software_en.shtml), and features an automated analysis of joint confidence regions for the obtained results. The software QTools is. available from Biolin Scientific (http://www.q-sense.com).

  2. 2.

    A MATLAB routine to predict the coverage-dependent \(f^{\mathrm{m}}_{\mathrm{a}}\) as a function of the particle size, mass and aspect ratio, and for a selected set of lateral distribution scenarios is freely available for download (http://www.rrichter.net).

References

  1. G.E. Jellison, in Handbook of Ellipsometry, ed. by H.W. Tompkins, E.A. Irene (William Andrew, Norwich, 2004), p. 237

    Google Scholar 

  2. H. Fujiwara, Spectroscopic Ellipsometry (Wiley, New York, 2007)

    Book  Google Scholar 

  3. R.M. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1984)

    Google Scholar 

  4. H.A. Lorentz, Theory of Electrons (Teubner, Leipzig, 1906)

    Google Scholar 

  5. N.S. Baranova, E. Nilebäck, F.M. Haller, D.C. Briggs, S. Svedhem, A.J. Day, R.P. Richter, J. Biol. Chem. 286, 25675 (2011)

    Article  Google Scholar 

  6. P. Bingen, G. Wang, N.F. Steinmetz, M. Rodahl, R.P. Richter, Anal. Chem. 80, 8880 (2008)

    Article  Google Scholar 

  7. B. Borovsky, B.L. Mason, J. Krim, J. Appl. Phys. 88, 4017 (2000)

    Article  ADS  Google Scholar 

  8. I. Carton, A.R. Brisson, R.P. Richter, Anal. Chem. 82, 9275 (2010)

    Article  Google Scholar 

  9. I. Carton, L. Malinina, R.P. Richter, Biophys. J. 99, 2947 (2010)

    Article  ADS  Google Scholar 

  10. J.C. Charmet, P.G. de Gennes, J. Phys. (Paris) 44(C10), 27 (1983)

    Google Scholar 

  11. J.W. Corsel, G.M. Willems, J.M.M. Kop, P.A. Cuypers, W.T.J. Hermens, J. Colloid Interface Sci. 111, 544 (1986)

    Article  Google Scholar 

  12. P.A. Cuypers, J.W. Corsel, M.P. Janssen, J.M.M. Kop, W.T. Hermens, H.C. Hemker, J. Biol. Chem. 258, 2426 (1983)

    Google Scholar 

  13. C.W.N. Damen, H. Speijer, W.T. Hermens, J.H.M. Schellens, H. Rosing, J.H. Beijnen, Anal. Biochem. 393, 73 (2009)

    Article  Google Scholar 

  14. A. Domack, O. Prucker, J. Rühe, D. Johannsmann, Phys. Rev. E 56, 680 (1997)

    Article  ADS  Google Scholar 

  15. N.B. Eisele, F.I. Andersson, S. Frey, R.P. Richter, Biomacromolecules 13, 2322 (2012)

    Article  Google Scholar 

  16. N.B. Eisele, S. Frey, J. Piehler, D. Görlich, R.P. Richter, EMBO Rep. 11, 366 (2010)

    Article  Google Scholar 

  17. J.A. De Feijter, J. Benjamins, F.A. Veer, Biopolymers 17, 1759 (1978)

    Article  Google Scholar 

  18. W.T. Hermens, M. Benes, R.P. Richter, H. Speijer, Biotechnol. Appl. Biochem. 39, 277 (2004)

    Article  Google Scholar 

  19. J.J. Iturri Ramos, S. Stahl, R.P. Richter, S.E. Moya, Macromolecules 43, 9063 (2010)

    Article  ADS  Google Scholar 

  20. G.E. Jellison, Thin Solid Films 313–314, 33 (1998)

    Article  Google Scholar 

  21. D. Johannsmann, Phys. Chem. Chem. Phys. 10, 4516 (2008)

    Article  Google Scholar 

  22. D. Johannsmann, I. Reviakine, E. Rojas, M. Gallego, Anal. Chem. 80, 8891 (2008)

    Article  Google Scholar 

  23. D. Johannsmann, I. Reviakine, R.P. Richter, Anal. Chem. 81, 8167 (2009)

    Article  Google Scholar 

  24. C.A. Keller, K. Glasmästar, V.P. Zhdanov, B. Kasemo, Phys. Rev. Lett. 84, 5443 (2000)

    Article  ADS  Google Scholar 

  25. H.A. Lorentz, Ann. Phys. 9, 641 (1880)

    Article  MATH  Google Scholar 

  26. L. Lorenz, Ann. Phys. 11, 70 (1880)

    Article  Google Scholar 

  27. C.J. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005)

    Article  Google Scholar 

  28. L. Macakova, E. Blomberg, P.M. Claesson, Langmuir 23, 12436 (2007)

    Article  Google Scholar 

  29. M.A. Plunkett, Z. Wang, M.W. Rutland, D. Johannsmann, Langmuir 19, 6837 (2003)

    Article  Google Scholar 

  30. I. Reviakine, D. Johannsmann, R.P. Richter, Anal. Chem. 83, 8838 (2011)

    Article  Google Scholar 

  31. R.P. Richter, A. Brisson, Langmuir 20, 4609 (2004)

    Article  Google Scholar 

  32. R.P. Richter, R. Bérat, A.R. Brisson, Langmuir 22, 3497–3505 (2006)

    Article  Google Scholar 

  33. E. Reimhult, C. Larsson, B. Kasemo, F. Höök, Anal. Chem. 76, 7211 (2004)

    Article  Google Scholar 

  34. K.B. Rodenhausen, M. Schubert, Thin Solid Films 519, 2772 (2011)

    Article  ADS  Google Scholar 

  35. K.B. Rodenhausen, T. Kasputis, A.K. Pannier, J.Y. Gerasimov, R.Y. Lai, M. Solinsky, T.E. Tiwald, H. Wang, A. Sarkar, T. Hofmann, N. Ianno, M. Schubert, Rev. Sci. Instrum. 82, 103111 (2011)

    Article  ADS  Google Scholar 

  36. K.B. Rodenhausen, B.A. Duensing, T. Kasputis, A.K. Pannier, T. Hofmann, M. Schubert, T.E. Tiwald, M. Solinsky, M. Wagner, Thin Solid Films 519, 2817 (2011)

    Article  ADS  Google Scholar 

  37. G. Sauerbrey, Z. Phys. 155, 206 (1959)

    Article  ADS  Google Scholar 

  38. P.M. Wolny, S. Banerji, C. Gounou, A.R. Brisson, A.J. Day, D.G. Jackson, R.P. Richter, J. Biol. Chem. 285, 30170 (2010)

    Article  Google Scholar 

  39. W. Yang, J.Y. Gerasimov, R.Y. Lai, Chem. Commun. 2902 (2009)

    Google Scholar 

  40. H. Zhao, P.H. Brown, P. Schuck, Biophys. J. 100, 2309 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf P. Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, R.P., Rodenhausen, K.B., Eisele, N.B., Schubert, M. (2014). Coupling Spectroscopic Ellipsometry and Quartz Crystal Microbalance to Study Organic Films at the Solid-Liquid Interface. In: Hinrichs, K., Eichhorn, KJ. (eds) Ellipsometry of Functional Organic Surfaces and Films. Springer Series in Surface Sciences, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40128-2_11

Download citation

Publish with us

Policies and ethics