Skip to main content

Quantum Probabilistic Dyadic Second-Order Logic

  • Conference paper
Logic, Language, Information, and Computation (WoLLIC 2013)

Abstract

We propose an expressive but decidable logic for reasoning about quantum systems. The logic is endowed with tensor operators to capture properties of composite systems, and with probabilistic predication formulas P  ≥ r (s), saying that a quantum system in state s will yield the answer ‘yes’ (i.e. it will collapse to a state satisfying property P) with a probability at least r whenever a binary measurement of property P is performed. Besides first-order quantifiers ranging over quantum states, we have two second-order quantifiers, one ranging over quantum-testable properties, the other over quantum “actions”. We use this formalism to express the correctness of some quantum programs. We prove decidability, via translation into the first-order logic of real numbers.

The research of J. Bergfeld, K. Kishida and J. Sack has been funded by VIDI grant 639.072.904 of the NWO. The research of S. Smets is funded by the VIDI grant 639.072.904 of the NWO and by the FP7/2007-2013/ERC Grant agreement no. 283963. The research of S. Zhong has been funded by China Scholarship Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th IEEE Conference on Logic in Computer Science (LiCS 2004), pp. 415–425. IEEE Press (2004)

    Google Scholar 

  2. Aerts, D.: Description of compound physical systems and logical interaction of physical systems. In: Beltrametti, E., van Fraassen, B. (eds.) Current Issues on Quantum Logic, pp. 381–405. Kluwer Academic (1981)

    Google Scholar 

  3. Baltag, A., Bergfeld, J., Kishida, K., Sack, J., Smets, S., Zhong, S.: PLQP & company: Decidable logics for quantum algorithms. Submitted to the International Journal of Theoretical Physics (2013)

    Google Scholar 

  4. Baltag, A., Bergfeld, J., Kishida, K., Sack, J., Smets, S., Zhong, S.: A Decidable Dynamic Logic for Quantum Reasoning. In: EPTCS (2012) (in print)

    Google Scholar 

  5. Baltag, A., Smets, S.: Complete Axiomatizations for Quantum Actions. International Journal of Theoretical Physics 44(12), 2267–2282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baltag, A., Smets, S.: LQP: The Dynamic Logic of Quantum Information. Mathematical Structures in Computer Science 16(3), 491–525 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G., von Neumann, J.: The Logic of Quantum Mechanics. The Annals of Mathematics 37, 823–843 (1936)

    Article  Google Scholar 

  8. Chadha, R., Mateus, P., Sernadas, A., Sernadas, C.: Extending classical logic for reasoning about quantum systems. In: Engesser, K., Gabbay, D.M., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures: Quantum Logic, pp. 325–371. Elsevier (2009)

    Google Scholar 

  9. Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in quantum theory: sharp and unsharp quantum logics. Trends in logic, vol. 22. Kluwer Acadamic Press, Dordrecht (2004)

    Book  Google Scholar 

  10. Dunn, J.M., Hagge, T.J., Moss, L.S., Wang, Z.: Quantum Logic as Motivated by Quantum Computing. The Journal of Symbolic Logic 70(2), 353–359 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henkin, L.: Completeness in the Theory of Types. The Journal of Symbolic Logic 15, 81–91 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    Google Scholar 

  13. Piron, C.: Foundations of Quantum Physics. W.A. Benjamin Inc. (1976)

    Google Scholar 

  14. Rabin, M.: Decidability of second order theories and automata on infinite trees. Transactions of the American Mathematical Society, 1–35 (1969)

    Google Scholar 

  15. Randall, C., Foulis, D.: Tensor products of quantum logics do not exist. Notices Amer. Math. Soc. 26(6) (1979)

    Google Scholar 

  16. Selinger, P.: Towards a quantum programming language. Mathematical Structures in Computer Science 14, 527–586 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica (1948)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baltag, A., Bergfeld, J.M., Kishida, K., Sack, J., Smets, S.J.L., Zhong, S. (2013). Quantum Probabilistic Dyadic Second-Order Logic. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2013. Lecture Notes in Computer Science, vol 8071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39992-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39992-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39991-6

  • Online ISBN: 978-3-642-39992-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics