Skip to main content

Reducing the Depth of Quantum Circuits Using Additional Circuit Lines

  • Conference paper
Reversible Computation (RC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7948))

Included in the following conference series:

Abstract

The synthesis of Boolean functions, as they are found in many quantum algorithms, is usually conducted in two steps. First, the function is realized in terms of a reversible circuit followed by a mapping into a corresponding quantum realization. During this process, the number of lines and the quantum costs of the resulting circuits have mainly been considered as optimization objectives thus far. However, beyond that also the depth of a quantum circuit is vital. Although first synthesis approaches that consider depth have recently been introduced, the majority of design methods did not consider this metric.

In this paper, we introduce an optimization approach aiming for the reduction of depth in the process of mapping a reversible circuit into a quantum circuit. For this purpose, we present an improved (local) mapping of single gates as well as a (global) optimization scheme considering the whole circuit. In both cases, we incorporate the idea of exploiting additional circuit lines which are used in order to split a chain of serial gates. Our optimization techniques enable a concurrent application of gates which significantly reduces the depth of the circuit. Experiments show that reductions of approx. 40% on average can be achieved when following this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fazel, K., Thornton, M., Rice, J.: ESOP-based toffoli gate cascade generation. In: Pacific Rim Conference on Communications, Computers and Signal Processing, PacRim 2007, pp. 206–209 (2007)

    Google Scholar 

  2. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conf., pp. 318–323 (2003)

    Google Scholar 

  3. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conf., pp. 270–275 (2009)

    Google Scholar 

  4. Soeken, M., Wille, R., Otterstedt, C., Drechsler, R.: A synthesis flow for sequential reversible circuits. In: Int’l Symposium on Multiple-Valued Logic, pp. 299–304 (2012)

    Google Scholar 

  5. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP Design Automation Conf., pp. 85–92 (2012)

    Google Scholar 

  6. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. The American Physical Society 52, 3457–3467 (1995)

    Google Scholar 

  7. Arabzadeh, M., Saheb Zamani, M., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quantum Information Processing, 1–23 (2012)

    Google Scholar 

  8. Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification and level compaction. Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(3), 436–444 (2008)

    Article  Google Scholar 

  9. Bocharov, A., Svore, K.M.: A depth-optimal canonical form for single-qubit quantum circuits arXiv preprint arXiv:1206.3223 (2012)

    Google Scholar 

  10. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits arXiv preprint arXiv:1206.0758 (2012)

    Google Scholar 

  11. Arabzadeh, M., Zamani, M., Sedighi, M., Saeedi, M.: Logical-depth-oriented reversible logic synthesis. In: Int’l Workshop on Logic and Synthesis (2011)

    Google Scholar 

  12. Toffoli, T.: Reversible computing. In: de Bakker, J., van Leeuwen, J. (eds.) Automata, Languages and Programming. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  13. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(6), 710–722 (2003)

    Article  Google Scholar 

  14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  15. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffolli gates. In: Int’l Symp. on Multi-Valued Logic, pp. 217–222 (May 2011)

    Google Scholar 

  16. Meter, R.V., Oskin, M.: Architectural implications of quantum computing technologies. J. Emerg. Technol. Comput. Syst. 2(1), 31–63 (2006)

    Article  Google Scholar 

  17. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding lines. In: Int’l Symp. on Multi-Valued Logic, pp. 217–222 (2010)

    Google Scholar 

  18. Zahra, S.: Technology Mapping and Optimization for Reversible and Quantum. PhD thesis, University of Victoria (2012)

    Google Scholar 

  19. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: an open source toolkit for the design of reversible circuits. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 64–76. Springer, Heidelberg (2012), RevKit is available at http://www.revkit.org

    Chapter  Google Scholar 

  20. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdessaied, N., Wille, R., Soeken, M., Drechsler, R. (2013). Reducing the Depth of Quantum Circuits Using Additional Circuit Lines. In: Dueck, G.W., Miller, D.M. (eds) Reversible Computation. RC 2013. Lecture Notes in Computer Science, vol 7948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38986-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38986-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38985-6

  • Online ISBN: 978-3-642-38986-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics