Skip to main content

Interpolation-Based Verification of Floating-Point Programs with Abstract CDCL

  • Conference paper
Static Analysis (SAS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7935))

Included in the following conference series:

Abstract

One approach for smt solvers to improve efficiency is to delegate reasoning to abstract domains. Solvers using abstract domains do not support interpolation and cannot be used for interpolation-based verification. We extend Abstract Conflict Driven Clause Learning (acdcl) solvers with proof generation and interpolation. Our results lead to the first interpolation procedure for floating-point logic and subsequently, the first interpolation-based verifiers for programs with floating-point variables. We demonstrate the potential of this approach by verifying a number of programs which are challenging for current verification tools.

Supported by the Toyota Motor Corporation, ERC project 280053, EPSRC project EP/J012564/1, and the FP7 STREP PINCETTE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brain, M., D’Silva, V., Haller, L., Griggio, A., Kroening, D.: An abstract interpretation of DPLL(T). In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 455–475. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In: Proc. of Formal Methods in Computer-Aided Design, pp. 69–76. IEEE Computer Society Press (2009)

    Google Scholar 

  3. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

    Google Scholar 

  5. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants in satisfiability modulo theories. ACM Transactions on Computational Logic 12(1), 7 (2010)

    Article  MathSciNet  Google Scholar 

  6. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-C programs using SAT. Formal Methods in Systems Design 25(2-3), 105–127 (2004)

    Article  MATH  Google Scholar 

  7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: Proc. of Principles of Programming Languages, pp. 143–154 (2013)

    Google Scholar 

  10. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with conflict-driven learning. In: Proc. of Tools and Algorithms for the Construction and Analysis of Systems, pp. 48–63 (2012)

    Google Scholar 

  11. Garoche, P.-L., Kahsai, T., Tinelli, C.: Invariant stream generators using automatic abstract transformers based on a decidable logic. CoRR, abs/1205.3758 (2012)

    Google Scholar 

  12. Griggio, A.: Effective word-level interpolation for software verification. In: Proc. of Formal Methods in Computer-Aided Design (2011)

    Google Scholar 

  13. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refining abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with systematic abstraction. In: Proc. of Formal Methods in Computer-Aided Design, pp. 131–140 (2012)

    Google Scholar 

  15. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

    Google Scholar 

  16. Kroening, D., Weissenbacher, G.: Lifting propositional interpolants to the word-level. In: FMCAD, pp. 85–89. IEEE (2007)

    Google Scholar 

  17. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 573–578. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science 345(1), 101–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. McMillan, K.L.: Lazy abstraction with interpolants. In: LPAR-18 2012, pp. 123–136. Springer (2006)

    Google Scholar 

  21. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)

    Book  MATH  Google Scholar 

  22. Ponsini, O., Michel, C., Rueher, M.: Refining abstract interpretation based value analysis with constraint programming techniques. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 593–607. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Totla, N., Wies, T.: Complete instantiation-based interpolation. In: Proc. of Principles of Programming Languages, pp. 537–548. ACM Press (2013)

    Google Scholar 

  24. Truchet, C., Pelleau, M., Benhamou, F.: Abstract domains for constraint programming, with the example of octagons. In: Symbolic and Numeric Algorithms for Scientific Computing, pp. 72–79 (2010)

    Google Scholar 

  25. Zhang, L., Malik, S.: The quest for efficient Boolean satisfiability solvers. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 295–313. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D. (2013). Interpolation-Based Verification of Floating-Point Programs with Abstract CDCL. In: Logozzo, F., Fähndrich, M. (eds) Static Analysis. SAS 2013. Lecture Notes in Computer Science, vol 7935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38856-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38856-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38855-2

  • Online ISBN: 978-3-642-38856-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics