Skip to main content

Spacings: An Example for Universality in Random Matrix Theory

  • Conference paper
  • First Online:
Book cover Random Matrices and Iterated Random Functions

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 53))

Abstract

Universality of local eigenvalue statistics is one of the most striking phenomena of Random Matrix Theory, that also accounts for a lot of the attention that the field has attracted over the past 15 years. In this paper we focus on the empirical spacing distribution and its Kolmogorov distance from the universal limit. We describe new results, some analytical, some numerical, that are contained in Schubert K (2012) On the convergence of the nearest neighbour eigenvalue spacing distribution for orthogonal and symplectic ensembles. PhD thesis, Ruhr-Universität Bochum, Germany. A large part of the paper is devoted to explain basic definitions and facts of Random Matrix Theory, culminating in a sketch of the proof of a weak version of convergence for the empirical spacing distribution σ N (see (23)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akemann, G., Baik, J., Di Francesco, P.: The Oxford Handbook of Random Matrix Theory. Oxford Handbooks in Mathematics Series. Oxford University Press, New York (2011)

    MATH  Google Scholar 

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices, 1st edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields 16(4), 803–866 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Volume 3 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York (1999)

    Google Scholar 

  6. Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality. Volume 18 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York (2009)

    Google Scholar 

  7. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52(12), 1491–1552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deift, P., Gioev, D., Kriecherbauer, T., Vanlessen, M.: Universality for orthogonal and symplectic Laguerre-type ensembles. J. Stat. Phys. 129(5–6), 949–1053 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős, L.: Universality of Wigner random matrices: a survey of recent results. Uspekhi Mat. Nauk. 66(3(399)), 67–198 (2011)

    Google Scholar 

  11. Ferrari, P.L., Spohn, H.: Random growth models. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) The Oxford Handbook of Random Matrix Theory. Oxford University Press, New York (2011)

    Google Scholar 

  12. Forrester, P.J.: Log-Gases and Random Matrices. Volume 34 of London Mathematical Society Monographs Series. Princeton University Press, Princeton (2010)

    Google Scholar 

  13. Forrester, P.J., Witte, N.S.: Exact Wigner surmise type evaluation of the spacing distribution in the bulk of the scaled random matrix ensembles. Lett. Math. Phys. 53(3), 195–200 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. Volume 77 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2000)

    Google Scholar 

  15. Hurwitz, A.: Über die Composition der quadratischen Formen von beliebig vielen Variablen. Nachr. Ges. Wiss. Göttingen, 309–316 (1898)

    Google Scholar 

  16. Jimbo, M., Miwa, T., Môri, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1(1), 80–158 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katz, N.M., Sarnak, P.: Random Matrices, Frobenius Eigenvalues, and Monodromy. Volume of 45 American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1999)

    Google Scholar 

  19. Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality and random matrices. J. Phys. A 43(40), 403001, 41 (2010)

    Google Scholar 

  20. Kuijlaars, A.B.J., Vanlessen, M.: Universality for eigenvalue correlations from the modified Jacobi unitary ensemble. Int. Math. Res. Not. 30, 1575–1600 (2002)

    Article  MathSciNet  Google Scholar 

  21. Kuijlaars, A.B.J., Vanlessen, M.: Universality for eigenvalue correlations at the origin of the spectrum. Commun. Math. Phys. 243(1), 163–191 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Le Caër, G., Male, C., Delannay, R.: Nearest-neighbour spacing distributions of the β-Hermite ensemble of random matrices. Phys. A Stat. Mech. Appl. 383, 190–208 (2007)

    Article  Google Scholar 

  23. Levin, E., Lubinsky, D.S.: Universality limits in the bulk for varying measures. Adv. Math. 219(3), 743–779 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. McLaughlin, K.T.-R., Miller, P.D.: The \(\overline{\partial }\) steepest descent method for orthogonal polynomials on the real line with varying weights. Int. Math. Res. Not. IMRN Art. ID rnn 075, 66 (2008). doi:10.1093/imrn/rnn075

    Google Scholar 

  25. Mehta, M.L.: Random matrices, Pure and Applied. Volume 142 of Mathematics (Amsterdam), 3rd edn. Elsevier/Academic, Amsterdam (2004)

    Google Scholar 

  26. Ramírez, J.A., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24(4), 919–944 (2011)

    Article  MATH  Google Scholar 

  27. Schubert, K.: On the convergence of the nearest neighbour eigenvalue spacing distribution for orthogonal and symplectic ensembles. PhD thesis, Ruhr-Universität Bochum (2012)

    Google Scholar 

  28. Shcherbina, M.: Orthogonal and symplectic matrix models: universality and other properties. Commun. Math. Phys. 307(3), 761–790 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Soshnikov, A.: Level spacings distribution for large random matrices: Gaussian fluctuations. Ann. Math. 148(2), 573–617 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao, T.: Topics in Random Matrix Theory. Volume of 132 Graduate Studies in Mathematics. American Mathematical Society, Providence (2012)

    Google Scholar 

  31. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tracy, C.A., Widom, H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92(5–6), 809–835 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tracy, C.A., Widom, H.: Matrix kernels for the Gaussian orthogonal and symplectic ensembles. Ann. Inst. Fourier (Grenoble) 55(6), 2197–2207 (2005)

    Google Scholar 

  34. Vanlessen, M.: Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory. Constr. Approx. 25(2), 125–175 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Widom, H.: On the relation between orthogonal, symplectic and unitary matrix ensembles. J. Stat. Phys. 94(3–4), 47–363 (1999)

    MathSciNet  Google Scholar 

  36. Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A(1/2), 32–52 (1928)

    Article  Google Scholar 

  37. Zirnbauer, M.R.: Symmetry classes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) The Oxford Handbook of Random Matrix Theory. Oxford University Press, New York (2011)

    Google Scholar 

Download references

Acknowledgements

Both authors acknowledge support from the Deutsche Forschungsgemeinschaft in the framework of the SFB/TR 12 “Symmetries and Universality in Mesoscopic Systems”. We are grateful to Peter Forrester for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kriecherbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kriecherbauer, T., Schubert, K. (2013). Spacings: An Example for Universality in Random Matrix Theory. In: Alsmeyer, G., Löwe, M. (eds) Random Matrices and Iterated Random Functions. Springer Proceedings in Mathematics & Statistics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38806-4_3

Download citation

Publish with us

Policies and ethics