Skip to main content

Epigraphical Projection for Solving Least Squares Anscombe Transformed Constrained Optimization Problems

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2013)

Abstract

This paper deals with the restoration of images corrupted by a non-invertible or ill-conditioned linear transform and Poisson noise. Poisson data typically occur in imaging processes where the images are obtained by counting particles, e.g., photons, that hit the image support. By using the Anscombe transform, the Poisson noise can be approximated by an additive Gaussian noise with zero mean and unit variance. Then, the least squares difference between the Anscombe transformed corrupted image and the original image can be estimated by the number of observations. We use this information by considering an Anscombe transformed constrained model to restore the image. The advantage with respect to corresponding penalized approaches lies in the existence of a simple model for parameter estimation. We solve the constrained minimization problem by applying a primal-dual algorithm together with a projection onto the epigraph of a convex function related to the Anscombe transform. We show that this epigraphical projection can be efficiently computed by Newton’s methods with an appropriate initialization. Numerical examples demonstrate the good performance of our approach, in particular, its close behaviour with respect to the I-divergence constrained model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anscombe, F.J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35, 246–254 (1948)

    MathSciNet  MATH  Google Scholar 

  2. Aravkin, A.Y., Burkey, J.V., Friedlander, M.P.: Variational properties of value functions. Preprint Univ. British Columbia (2012)

    Google Scholar 

  3. Bardsley, J.M., Goldes, J.: Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Problems 25(9), 095005 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bot, R.I., Hendrich, C.: Convergence analysis for a primal-dual monotone + skew splitting algorithm with application to total variation minimization. Preprint Univ. Chemnitz (2012)

    Google Scholar 

  5. Carlavan, M., Blanc-Féraud, L.: Sparse Poisson noisy image deblurring. IEEE Transactions on Image Processing 21(4), 1834–1846 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaux, C., Blanc-Féraud, L., Zerubia, J.: Wavelet-based restoration methods: Application in 3d confocal microscopy images. In: Proc. SPIE Conf. Wavelets, San Diego, p. 67010E (2007)

    Google Scholar 

  8. Chaux, C., Pesquet, J.-C., Pustelnik, N.: Nested iterative algorithms for convex constrained image recovery problems. SIAM Journal on Imaging Science 2(2), 730–762 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cherchia, G., Pustelnik, N., Pesquet, J.-C., Pesquet-Popescu, B.: A proximal approach for constrained cosparse modelling. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Kyoto, Japan (2012)

    Google Scholar 

  10. Chierchia, G., Pustelnik, N., Pesquet, J.-C., Pesquet-Popescu, B.: Epigraphical projection and proximal tools for solving constrained convex optimization problems - part I (2012) (preprint)

    Google Scholar 

  11. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)

    Chapter  Google Scholar 

  12. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued and Variational Analysis 20(2), 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dupé, F.-X., Fadili, J., Starck, J.-L.: A proximal iteration for deconvolving Poisson noisy images using sparse representations. IEEE Transactions on Image Processing 18(2), 310–321 (2009)

    Article  MathSciNet  Google Scholar 

  14. Figueiredo, M.A.T., Bioucas-Dias, J.M.: Restoration of Poissonian images using alternating direction optimization. IEEE Transactions on Image Processing 19(12), 3133–3145 (2010)

    Article  MathSciNet  Google Scholar 

  15. Hanke–Bourgeois, M.: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens. Teubner, Stuttgart (2002)

    Book  MATH  Google Scholar 

  16. Jezierska, A., Chouzenoux, E., Pesquet, J.-C., Talbot, H.: A primal-dual proximal splitting approach for restoring data corrupted with Poisson-Gaussian noise. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2012), Kyoto, Japan (2012)

    Google Scholar 

  17. Li, J., Shen, Z., Jin, R., Zhang, X.: A reweighted ℓ2 method for image restoration with Poisson and mixed Poisson-Gaussian noise. UCLA Preprint (2012)

    Google Scholar 

  18. Mikkitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Transactions on Image Processing 20(1), 99–109 (2011)

    Article  MathSciNet  Google Scholar 

  19. Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 810–817 (2009)

    Google Scholar 

  20. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  21. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. Journal of Visual Communication and Image Representation 21(3), 193–199 (2010)

    Article  MathSciNet  Google Scholar 

  22. Teuber, T., Steidl, G., Chan, R.-H.: Minimization and parameter estimation for seminorm regularization models with I-divergence constraints. Preprint Univ. Kaiserslautern (2012)

    Google Scholar 

  23. Vu, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Advances in Computational Mathematics (2012) (accepted)

    Google Scholar 

  24. Zanella, R., Boccacci, P., Zanni, L., Bertero, M.: Efficient gradient projection methods for edge-preserving removal of Poisson noise. Inverse Problems 25(4), 045010 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harizanov, S., Pesquet, JC., Steidl, G. (2013). Epigraphical Projection for Solving Least Squares Anscombe Transformed Constrained Optimization Problems. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics