Skip to main content

Ellipsoid-Weighted Protein Conformation Alignment

  • Conference paper
Book cover Bioinformatics Research and Applications (ISBRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7875))

Included in the following conference series:

  • 4023 Accesses

Abstract

Conformation alignment is a critical step for properly interpreting protein motions and conformational changes. The most widely used approach for superposing two conformations is by minimizing their root mean square distance (RMSD). In this work, we treat the alignment problem from a novel energy-minimization perspective. To this end we associate each atom in the protein with a mean-field potential well, whose shape, ellipsoidal in general, is to be inferred from the observed or computed fluctuations of that atom around its mean position. The scales and directions of the fluctuations can be obtained experimentally from anisotropic B-factors for crystal structures or computationally. We then show that this “ellipsoid-weighted” RMSD alignment can be reformulated nicely as a point-to-plane matching problem studied in computational geometry. This new alignment method is a generalization of standard RMSD and Gaussian-weighted RMSD alignment. It is heavily weighted by immobile regions and immobile directions of the protein and hence highlights the directional motions of the flexible parts. It has an additional advantage of aligning conformations of proteins along their preferred directions of motions and could be applied to order protein conformations along its trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9, 646–652 (2002)

    Article  Google Scholar 

  2. Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001)

    Article  Google Scholar 

  3. Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J. 80, 505–515 (2001)

    Article  Google Scholar 

  4. Song, G., Jernigan, R.L.: An enhanced elastic network model to represent the motions of domain-swapped proteins. Proteins 63, 197–209 (2006)

    Article  Google Scholar 

  5. Henzler-Wildman, K., Kern, D.: Dynamic personalities of proteins. Nature 450, 964–972 (2007)

    Article  Google Scholar 

  6. Dror, R.O., Dirks, R.M., Grossman, J.P., Xu, H., Shaw, D.E.: Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys 41, 429–452 (2012)

    Article  Google Scholar 

  7. Kabsch, W.: Solution for Best Rotation to Relate 2 Sets of Vectors. Acta Crystallogr. A 32, 922–923 (1976)

    Article  Google Scholar 

  8. Mclachlan, A.D.: Rapid Comparison of Protein Structures. Acta Crystallogr. A 38, 871–873 (1982)

    Article  Google Scholar 

  9. Kabsch, W.: Discussion of Solution for Best Rotation to Relate 2 Sets of Vectors. Acta Crystallogr. A 34, 827–828 (1978)

    Article  Google Scholar 

  10. Coutsias, E.A., Seok, C., Dill, K.A.: Using quaternions to calculate RMSD. J. Comput. Chem. 25, 1849–1857 (2004)

    Article  Google Scholar 

  11. Khazanov, N.A., Damm-Ganamet, K.L., Quang, D.X., Carlson, H.A.: Overcoming sequence misalignments with weighted structural superposition. Proteins 80, 2523–2535 (2012)

    Article  Google Scholar 

  12. Wriggers, W., Schulten, K.: Protein domain movements: Detection of rigid domains and visualization of hinges in comparisons of atomic coordinates. Proteins-Structure Function and Genetics 29, 1–14 (1997)

    Google Scholar 

  13. Irving, J.A., Whisstock, J.C., Lesk, A.M.: Protein structural alignments and functional genomics. Proteins 42, 378–382 (2001)

    Article  Google Scholar 

  14. Damm, K.L., Carlson, H.A.: Gaussian-weighted RMSD superposition of proteins: A structural comparison for flexible proteins and predicted protein structures. Biophysical Journal 90, 4558–4573 (2006)

    Article  Google Scholar 

  15. Theobald, D.L., Wuttke, D.S.: Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem. Proc. Natl. Acad. Sci. U S A 103, 18521–18527 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Theobald, D.L., Wuttke, D.S.: THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures. Bioinformatics 22, 2171–2172 (2006)

    Article  Google Scholar 

  17. Liu, Y.S., Fang, Y., Ramani, K.: Using least median of squares for structural superposition of flexible proteins. BMC Bioinformatics 10, 29 (2009)

    Article  Google Scholar 

  18. Yang, L., Song, G., Jernigan, R.L.: Comparisons of experimental and computed protein anisotropic temperature factors. Proteins 76, 164–175 (2009)

    Article  Google Scholar 

  19. Liu, P., Agrafiotis, D.K., Theobald, D.L.: Fast determination of the optimal rotational matrix for macromolecular superpositions. J. Comput. Chem. 31, 1561–1563 (2010)

    Google Scholar 

  20. Horn, B.K.P.: Closed-Form Solution of Absolute Orientation Using Unit Quaternions. J. Opt. Soc. Am A 4, 629–642 (1987)

    Article  Google Scholar 

  21. Besl, P.J., Mckay, N.D.: A Method for Registration of 3-D Shapes. IEEE T Pattern Anal. 14, 239–256 (1992)

    Article  Google Scholar 

  22. Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucleic Acids Res. 26, 4280–4290 (1998)

    Article  Google Scholar 

  23. Chen, Y., Medioni, G.: Object Modeling by Registration of Multiple Range Images. Image Vision Comput. 10, 145–155 (1992)

    Article  Google Scholar 

  24. Low, K.-L.: Linear Least-Squares Optimization for Point-to-Place ICP Surface Registration. Chapel Hill, University of North Carolina (2004)

    Google Scholar 

  25. Yang, L., Song, G., Jernigan, R.L.: How well can we understand large-scale protein motions using normal modes of elastic network models? Biophys J. 93, 920–929 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Na, H., Song, G. (2013). Ellipsoid-Weighted Protein Conformation Alignment. In: Cai, Z., Eulenstein, O., Janies, D., Schwartz, D. (eds) Bioinformatics Research and Applications. ISBRA 2013. Lecture Notes in Computer Science(), vol 7875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38036-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38036-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38035-8

  • Online ISBN: 978-3-642-38036-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics