Skip to main content

Adaptive Unsupervised Multi-view Feature Selection for Visual Concept Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Abstract

To reveal and leverage the correlated and complemental information between different views, a great amount of multi-view learning algorithms have been proposed in recent years. However, unsupervised feature selection in multi-view learning is still a challenge due to lack of data labels that could be utilized to select the discriminative features. Moreover, most of the traditional feature selection methods are developed for the single-view data, and are not directly applicable to the multi-view data. Therefore, we propose an unsupervised learning method called Adaptive Unsupervised Multi-view Feature Selection (AUMFS) in this paper. AUMFS attempts to jointly utilize three kinds of vital information, i.e., data cluster structure, data similarity and the correlations between different views, contained in the original data together for feature selection. To achieve this goal, a robust sparse regression model with the l 2,1-norm penalty is introduced to predict data cluster labels, and at the same time, multiple view-dependent visual similar graphs are constructed to flexibly model the visual similarity in each view. Then, AUMFS integrates data cluster labels prediction and adaptive multi-view visual similar graph learning into a unified framework. To solve the objective function of AUMFS, a simple yet efficient iterative method is proposed. We apply AUMFS to three visual concept recognition applications (i.e., social image concept recognition, object recognition and video-based human action recognition) on four benchmark datasets. Experimental results show the proposed method significantly outperforms several state-of-the-art feature selection methods. More importantly, our method is not very sensitive to the parameters and the optimization method converges very fast.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lisin, D., Mattar, M., Blaschko, M., Learned-Miller, E., Benfield, M.: Combining local and global image features for object class recognition. In: IEEE Workshop on Learning in CVPR (2005)

    Google Scholar 

  2. Sun, X., Chen, M., Hauptmann, A.: Action recognition via local descriptors and holistic features. In: CVPR Workshops, pp. 58–65. IEEE (2009)

    Google Scholar 

  3. Cao, L., Tian, Y., Liu, Z., Yao, B., Zhang, Z., Huang, T.S.: Action detection using multiple spatial-temporal interest point features. In: ICME, pp. 340–345 (2010)

    Google Scholar 

  4. Lowe, D.: Distinctive image features from scale-invariant keypoints. J. of CV 60, 91–110 (2004)

    Google Scholar 

  5. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. J. of TPAMI 28, 2037–2041 (2006)

    Article  Google Scholar 

  6. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. J. of TPAMI 27, 1615–1630 (2005)

    Article  Google Scholar 

  7. Xia, T., Tao, D., Mei, T., Zhang, Y.: Multiview spectral embedding  40, 1438–1446 (2010)

    Google Scholar 

  8. Bickel, S., Scheffer, T.: Multi-view clustering. In: ICDM, pp. 19–26 (2004)

    Google Scholar 

  9. Okun, O., Priisalu, H.: Multiple views in ensembles of nearest neighbor classifiers. In: ICML Workshop on Learning with Multiple Views (2005)

    Google Scholar 

  10. Yang, Y., Shen, H., Ma, Z., Huang, Z., Zhou, X.: L21-norm regularized discriminative feature selection for unsupervised learning. In: IJCAI (2011)

    Google Scholar 

  11. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience, Chichester (2001)

    MATH  Google Scholar 

  12. Zhao, Z., Wang, L., Liu, H.: Efficient spectral feature selection with minimum redundancy. In: AAAI (2010)

    Google Scholar 

  13. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS (2005)

    Google Scholar 

  14. Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In: ICML, pp. 1151–1157 (2007)

    Google Scholar 

  15. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In: KDD, pp. 333–342 (2010)

    Google Scholar 

  16. Zechao, L., Yi, Y., Jing, L., Xiaofang, Z., Hanqing, L.: Unsupervised feature selection using nonegative spectral analysis. In: AAAI (2012)

    Google Scholar 

  17. Shi, J., Malik, J.: Normalized cuts and image segmentation. J. of TPAMI 22, 888–905 (2000)

    Article  Google Scholar 

  18. Piepel, G.: Robust regression and outlier detection. Technometrics 31, 260–261 (1989)

    Article  Google Scholar 

  19. Kong, D., Ding, C., Huang, H.: Robust nonnegative matrix factorization using l 21-norm. In: CIKM, pp. 673–682 (2011)

    Google Scholar 

  20. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint l 2,1-norms minimization. NIPS 23, 1813–1821 (2010)

    Google Scholar 

  21. Wang, M., Hua, X.S., Yuan, X., Song, Y., Dai, L.R.: Optimizing multi-graph learning: Towards a unified video annotation scheme. In: ACM MM, pp. 862–870 (2007)

    Google Scholar 

  22. Yang, Y., Shen, H.T., Nie, F., Ji, R., Zhou, X.: Nonnegative spectral clustering with discriminative regularization. In: AAAI (2011)

    Google Scholar 

  23. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge Univ. Pr. (2004)

    Google Scholar 

  24. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.T.: Nus-wide: A real-world web image database from national university of singapore. In: CIVR (2009)

    Google Scholar 

  26. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICCV, pp. 1395–1402 (2005)

    Google Scholar 

  27. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local \({\texttt{SVM}}\) approach. In: ICPR, vol. 3, pp. 32–36. IEEE (2004)

    Google Scholar 

  28. Laptev, I.: On space-time interest points. J. of IJCV 64, 107–123 (2005)

    Article  Google Scholar 

  29. Chen, M., Hauptmann, A.: Mosift: Recognizing human actions in surveillance videos. In: CMU-CS-09-161 (2009)

    Google Scholar 

  30. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. J. of ACM TIST 2, 1–27 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, Y., Xiao, J., Zhuang, Y., Liu, X. (2013). Adaptive Unsupervised Multi-view Feature Selection for Visual Concept Recognition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics