Skip to main content

An Algorithm for Constructing Parsimonious Hybridization Networks with Multiple Phylogenetic Trees

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7821))

Abstract

Phylogenetic network is a model for reticulate evolution. Hybridization network is one type of phylogenetic network for a set of discordant gene trees, and “displays” each gene tree. A central computational problem on hybridization networks is: given a set of gene trees, reconstruct the minimum (i.e. most parsimonious) hybridization network that displays each given gene tree. This problem is known to be NP-hard, and existing approaches for this problem are either heuristics or make simplifying assumptions (e.g. work with only two input trees or assume some topological properties). In this paper, we develop an exact algorithm (called PIRN C ) for inferring the minimum hybridization networks from multiple gene trees. The PIRN C algorithm does not rely on structural assumptions. To the best of our knowledge, PIRN C is the first exact algorithm for this formulation. When the number of reticulation events is relatively small (say four or fewer), PIRN C runs reasonably efficient even for moderately large datasets. For building more complex networks, we also develop a heuristic version of PIRN C called PIRN CH . Simulation shows that PIRN CH usually produces networks with fewer reticulation events than those by an existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, B., Scornavacca, C., Cenci, A., Huson, D.H.: Fast computation of minimum hybridization networks. Bioinformatics 28, 191–197 (2012)

    Article  Google Scholar 

  2. Bordewich, M., Linz, S., John, K.S., Semple, C.: A reduction algorithm for computing the hybridization number of two trees. Evolutionary Bioinformatics 3, 86–98 (2007)

    Google Scholar 

  3. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8, 409–423 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bordewich, M., Semple, C.: Computing the minimum number of hybridization events for a consistent evolutionary history. Discrete Applied Mathematics 155, 914–928 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Z., Wang, L.: Algorithms for reticulate networks of multiple phylogenetic trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(2), 372–384 (2012)

    Article  Google Scholar 

  6. Gusfield, D.: Optimal, efficient reconstruction of Root-Unknown phylogenetic networks with constrained and structured recombination. J. Comp. Sys. Sci. 70, 381–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Appl. Math. 71, 153–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huson, D.H., Klöpper, T.H.: Beyond Galled Trees - Decomposition and Computation of Galled Networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 211–225. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Huson, D., Rupp, R., Gambette, P., Paul, C.: Computing galled networks from real data. Bioinformatics 25, i85–i93 (2009); Bioinformatics Suppl., Proceedings of ISMB 2009

    Google Scholar 

  10. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  11. Morrison, D.A.: Introduction to Phylogenetic Networks. RJR Productions, Uppsala (2011)

    Google Scholar 

  12. Nakhleh, L.: Evolutionary phylogenetic networks: models and issues. In: Heath, L., Ramakrishnan, N. (eds.) The Problem Solving Handbook for Computational Biology and Bioinformatics, pp. 125–158. Springer (2010)

    Google Scholar 

  13. Park, H.J., Nakhleh, L.: MURPAR: A Fast Heuristic for Inferring Parsimonious Phylogenetic Networks from Multiple Gene Trees. In: Bleris, L., Măndoiu, I., Schwartz, R., Wang, J. (eds.) ISBRA 2012. LNCS, vol. 7292, pp. 213–224. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Semple, C.: Hybridization networks. In: Gascuel, O., Steel, M. (eds.) Reconstructing Evolution: New Mathematical and Computational Advances, Oxford, pp. 277–309 (2007)

    Google Scholar 

  15. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T.: Constructing Level-2 Phylogenetic Networks from Triplets. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 450–462. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Whidden, C., Zeh, N.: A Unifying View on Approximation and FPT of Agreement Forests. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 390–402. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Wu, Y.: A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25, 190–196 (2009)

    Article  Google Scholar 

  18. Wu, Y.: Close lower and upper bounds for the minimum reticulate network of multiple phylogenetic trees. Bioinformatics (Supplement Issue for ISMB 2010 Proceedings) 26, 140–148 (2010)

    Google Scholar 

  19. Wu, Y.: Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood. Evolution 66, 763–775 (2012)

    Article  Google Scholar 

  20. Wu, Y., Wang, J.: Fast Computation of the Exact Hybridization Number of Two Phylogenetic Trees. In: Borodovsky, M., Gogarten, J.P., Przytycka, T.M., Rajasekaran, S. (eds.) ISBRA 2010. LNCS, vol. 6053, pp. 203–214. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Y. (2013). An Algorithm for Constructing Parsimonious Hybridization Networks with Multiple Phylogenetic Trees. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37195-0_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37194-3

  • Online ISBN: 978-3-642-37195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics