Skip to main content

Application of Semidefinite Programming to Maximize the Spectral Gap Produced by Node Removal

  • Conference paper

Part of the book series: Studies in Computational Intelligence ((SCI,volume 476))

Abstract

The smallest positive eigenvalue of the Laplacian of a network is called the spectral gap and characterizes various dynamics on networks. We propose mathematical programming methods to maximize the spectral gap of a given network by removing a fixed number of nodes. We formulate relaxed versions of the original problem using semidefinite programming and apply them to example networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://sedumi.ie.lehigh.edu

  2. http://www.wormatlas.org

  3. Almendral, J.A., Díaz-Guilera, A.: Dynamical and spectral properties of complex networks. New J. Phys. 9, 187 (2007)

    Article  Google Scholar 

  4. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Bendsøe, M.P., Sigmund, O.: Topology Optimization. Springer (2003)

    Google Scholar 

  7. Chen, B.L., Hall, D.H., Chklovskii, D.B.: Wiring optimization can relate neuronal structure and function. Proc. Natl. Acad. Sci. USA 103, 4723–4728 (2006)

    Article  Google Scholar 

  8. Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. CMU (2010)

    Google Scholar 

  9. Cvetkovic, D., Cangalovic, M., Kovacevic-Vujcic, V.: Semidefinite Programming Methods for the Symmetric Traveling Salesman Problem. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 126–136. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Donetti, L., Neri, F., Munoz, M.A.: Optimal network topologies: expanders, cages, Ramanujan graphs, entangled networks and all that. J. Stat. Mech., P08007 (2006)

    Google Scholar 

  11. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via matrix completion I: general framework. SIAM J. Optim. 11, 647–674 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goemans, M.X.: Semidefinite programming in combinatorial optimization. Math. Programming 79, 143–161 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: Relaxations of vertex packing. J. Comb. Theory B 40, 330–343 (1986)

    Article  MATH  Google Scholar 

  14. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. on Info. Th. 25, 1–7 (1979)

    Article  MATH  Google Scholar 

  15. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. Siam J. Optimiz. 1, 166–190 (1991)

    Article  MATH  Google Scholar 

  16. Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results. Math. Program. Ser. B 95, 305–327 (2003)

    Article  MathSciNet  Google Scholar 

  17. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95, 215–233 (2007)

    Article  Google Scholar 

  18. Padberg, M.: The Boolean quadric polytope—some characteristics, facets and relatives. Math. Programming 45(1), 139–172 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 4, 145–162 (2004)

    Article  Google Scholar 

  20. Watanabe, T., Masuda, N.: Enhancing the spectral gap of networks by node removal. Phys. Rev. E 82, 46102 (2010)

    Article  MathSciNet  Google Scholar 

  21. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropological Res. 33, 452–473 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masuda, N., Fujie, T., Murota, K. (2013). Application of Semidefinite Programming to Maximize the Spectral Gap Produced by Node Removal. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds) Complex Networks IV. Studies in Computational Intelligence, vol 476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36844-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36844-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36843-1

  • Online ISBN: 978-3-642-36844-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics