Skip to main content

Hardware Acceleration of Matrix Multiplication over Small Prime Finite Fields

  • Conference paper
  • 1566 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7806))

Abstract

Dense matrix-matrix multiplication over small finite fields is a common operation in many application domains, such as cryptography, random numbers, and error correcting codes. This paper shows that FPGAs have the potential to greatly accelerate this time consuming operation, and in particular that systolic array based approaches are both practical and efficient when using large modern devices. A number of finite-field specific architectural optimisations are introduced, allowing n×n matrices to be processed in O(n) cycles, for matrix sizes up to n = 350. Comparison with optimised software implementations on a single-core CPU shows that an FPGA accelerator can achieve between 80x and 700x speed-up over a Virtex-7 XC7V200T for GF(2k), but for GF(3) and larger finite fields can provide practical speed-ups of 1000x or more.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, M.: Algorithmic Algebraic Techniques and their Application to Block Cipher Cryptanalysis. PhD thesis, Royal Holloway, University of London (2010)

    Google Scholar 

  2. Thomas, D., Luk, W.: Fpga-optimised uniform random number generators using luts and shift registers. In: 2010 International Conference on Field Programmable Logic and Applications (FPL), pp. 77–82. IEEE (2010)

    Google Scholar 

  3. Zhuo, L., Prasanna, V.: Scalable and modular algorithms for floating-point matrix multiplication on fpgas. In: Proceedings of the18th International Parallel and Distributed Processing Symposium, p. 92. IEEE (2004)

    Google Scholar 

  4. Bensaali, F., Amira, A., Sotudeh, R.: Floating-point matrix product on fpga. In: IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2007, pp. 466–473. IEEE (2007)

    Google Scholar 

  5. Shoup, V.: A computational introduction to number theory and algebra. Cambridge University Press (2008)

    Google Scholar 

  6. Shoup, V.: Ntl: A library for doing number theory (2001)

    Google Scholar 

  7. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4), 354–356 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of symbolic computation 9(3), 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kung, H., Leiserson, C.E.: Systolic arrays (for vlsi). Society for Industrial & Applied, 256 (1979)

    Google Scholar 

  10. Dumas, J., Gautier, T., Giesbrecht, M., Giorgi, P., Hovinen, B., Kaltofen, E., Saunders, B., Turner, W., Villard, G., et al.: Linbox: A generic library for exact linear algebra. In: Proceedings of the 2002 International Congress of Mathematical Software, pp. 40–50. World Scientific Pub., Beijing (2002)

    Google Scholar 

  11. Albrecht, M., Bard, G.: M4ri–linear algebra over gf (2) (2008)

    Google Scholar 

  12. Dorsey, P.: Xilinx stacked silicon interconnect technology delivers breakthrough fpga capacity, bandwidth, and power efficiency. Xilinx White Paper: Virtex-7 FPGAs, 1–10 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleming, S.T., Thomas, D.B. (2013). Hardware Acceleration of Matrix Multiplication over Small Prime Finite Fields. In: Brisk, P., de Figueiredo Coutinho, J.G., Diniz, P.C. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2013. Lecture Notes in Computer Science, vol 7806. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36812-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36812-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36811-0

  • Online ISBN: 978-3-642-36812-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics