Skip to main content

An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Element Method

  • Chapter
Facing the Multicore-Challenge III

Abstract

We describe an efficient parallelization strategy for the discontinuous Galerkin spectral element method, illustrated by a structured grid framework. Target applications are large scale DNS and LES calculations on massively parallel systems. Due to the simple and efficient formulation of the method, a parallelization aiming at one-element-per-processor calculations is feasible; a highly desired feature for emerging multi- and many-core architectures. We show scale-up tests on up to 131,000 processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Black, K.: A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika 35(1), 133–146 (1999)

    MathSciNet  Google Scholar 

  3. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single Domains. Springer (2006)

    Google Scholar 

  4. Fagherazzi, S., Furbish, D., Rasetarinera, P., Hussaini, M.Y.: Application of the discontinuous spectral Galerkin method to groundwater flow. Advances in Water Resourses 27, 129–140 (2004)

    Article  Google Scholar 

  5. Gassner, G., Kopriva, D.: A comparison of the dispersion and dissipation errors of gauss and gauss lobatto discontinuous galerkin spectral element methods. SIAM Journal on Scientific Computing 33(5), 2560–2579 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gassner, G.J., Hindenlang, F., Munz, C.-D.: A Runge-Kutta based Discontinuous Galerkin Method with Time Accurate Local Time Stepping. In: Advances in Computational Fluid Dynamics, vol. 2, pp. 95–118. World Scientific (2011)

    Google Scholar 

  7. Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous galerkin methods for unsteady problems. Computers & Fluids 61, 86–93 (2012)

    Article  Google Scholar 

  8. Kopriva, D., Woodruff, S., Hussaini, M.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. International Journal for Numerical Methods in Engineering 53 (2002)

    Google Scholar 

  9. Kopriva, D.: Metric identities and the discontinuous spectral element method on curvilinear meshes. Journal of Scientific Computing 26(3), 301–327 (2006), http://dx.doi.org/10.1007/s10915-005-9070-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Springer (2009), http://dx.doi.org/10.1007/978-90-481-2261-5_8

  11. Rasetarinera, P., Kopriva, D., Hussaini, M.: Discontinuous spectral element solution of acoustic radiation from thin airfoils. AIAA Journal 39(11), 2070–2075 (2001)

    Article  Google Scholar 

  12. Restelli, M., Giraldo, F.: A conservative discontinuous Galerkin semi-implicit formulation for the navier-stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comp. 31(3), 2231–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altmann, C., Beck, A.D., Hindenlang, F., Staudenmaier, M., Gassner, G.J., Munz, CD. (2013). An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Element Method. In: Keller, R., Kramer, D., Weiss, JP. (eds) Facing the Multicore-Challenge III. Lecture Notes in Computer Science, vol 7686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35893-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35893-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35892-0

  • Online ISBN: 978-3-642-35893-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics