Skip to main content

From Above-Threshold Photoemission to Attosecond Physics at Nanometric Tungsten Tips

  • Chapter
Progress in Ultrafast Intense Laser Science

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 104))

  • 1461 Accesses

Abstract

The interaction of few-cycle laser pulses with a nanometric metal tip is described. We find many effects that the strong-field physics community has discovered with atoms in the last 30 years, and describe them here in experiments with solid nanotips. Starting with a clear identification of several photon orders in above-threshold photoemission, via strong-field effects such as peak shifting and peak suppression, to the observation of a pronounced plateau in electron spectra, we show that we have reached the level of control necessary for attosecond physics experiments. In particular, we observe electronic wavepacket dynamics on the attosecond time scale. Namely, by variation of the carrier-envelope phase of the driving laser pulses, we observe a qualitative change in the electron spectra: For cosine pulses we obtain an almost flat plateau part, whereas for minus-cosine pulses the plateau part clearly shows photon orders. We interpret this change by the occurrence of a single or a double slit configuration in time causing electronic matter wave interference in the time-energy domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the intensity values given here are the correct ones, where the ones in [20] are by a factor of 2 wrong. A careful reanalysis of the local dc electric fields at the tip apex has yielded a value of (1.2±0.25) GV/m, whereas in [20] we mention 0.8 GV/m.

References

  1. J. Spence, High-Resolution Electron Microscopy. Monographs on the Physics and Chemistry of Materials (Oxford University Press, Oxford, 2009)

    Google Scholar 

  2. R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Phys. Rev. Lett. 102, 096101 (2009)

    Article  ADS  Google Scholar 

  3. J. Hoffrogge, R. Fröhlich, M.A. Kasevich, P. Hommelhoff, Phys. Rev. Lett. 106, 193001 (2011)

    Article  ADS  Google Scholar 

  4. T. Plettner, P.P. Lu, R.L. Byer, Phys. Rev. Spec. Top., Accel. Beams 9, 111301 (2006)

    Article  ADS  Google Scholar 

  5. T. Plettner, R.L. Byer, C. McGuinness, P. Hommelhoff, Phys. Rev. Spec. Top., Accel. Beams 12, 101302 (2009)

    Article  ADS  Google Scholar 

  6. P.B. Corkum, F. Krausz, Nat. Phys. 3(6), 381 (2007)

    Article  Google Scholar 

  7. H. Niikura, F. Légáre, R. Hasbani, A.D. Bandrauk, M.Y. Ivanov, D.M. Villeneuve, P.B. Corkum, Nature 417, 917 (2002)

    Article  ADS  Google Scholar 

  8. S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith, C.C. Chirila, M. Lein, J.W.G. Tisch, J.P. Marangos, Science 312(5772), 424 (2006)

    Article  ADS  Google Scholar 

  9. G. Fursey, Field Emission in Vacuum Microelectronics (Kluwer Academic/Plenum, New York, 2005)

    Google Scholar 

  10. T.T. Tsong, Atom-Probe Field Ion Microscopy (Cambridge University Press, Cambridge, 1990)

    Book  Google Scholar 

  11. E.W. Müller, K. Bahadur, Phys. Rev. 102, 624 (1956)

    Article  ADS  Google Scholar 

  12. J. Hoffrogge, J.P. Stein et al., to be published

    Google Scholar 

  13. S. Thomas, M. Krüger, M. Förster, M. Schenk, P. Hommelhoff. arXiv:1209.5195 (2012, submitted for publication)

  14. S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, S. Kim, Nature 453(7196), 757 (2008)

    Article  ADS  Google Scholar 

  15. C. Ropers, D.R. Solli, C.P. Schulz, C. Lienau, T. Elsaesser, Phys. Rev. Lett. 98, 043907 (2007)

    Article  ADS  Google Scholar 

  16. R. Bormann, M. Gulde, A. Weismann, S.V. Yalunin, C. Ropers, Phys. Rev. Lett. 105, 147601 (2010)

    Article  ADS  Google Scholar 

  17. H. Yanagisawa, C. Hafner, P. Doná, M. Klöckner, D. Leuenberger, T. Greber, M. Hengsberger, J. Osterwalder, Phys. Rev. Lett. 103, 257603 (2009)

    Article  ADS  Google Scholar 

  18. R. Ganter, R. Bakker, C. Gough, S.C. Leemann, M. Paraliev, M. Pedrozzi, F. Le Pimpec, V. Schlott, L. Rivkin, A. Wrulich, Phys. Rev. Lett. 100(6), 064801 (2008)

    Article  ADS  Google Scholar 

  19. S. Tsujino, F. le Pimpec, J. Raabe, M. Buess, M. Dehler, E. Kirk, J. Gobrecht, A. Wrulich, Appl. Phys. Lett. 94(9), 093508 (2009)

    Article  ADS  Google Scholar 

  20. M. Schenk, M. Krüger, P. Hommelhoff, Phys. Rev. Lett. 105(25), 257601 (2010)

    Article  ADS  Google Scholar 

  21. M. Schenk, M. Krüger, P. Hommelhoff, in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), 2011 (2011), pp. 404–406

    Google Scholar 

  22. M. Krüger, M. Schenk, P. Hommelhoff, Nature 475(7354), 78 (2011)

    Article  Google Scholar 

  23. M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, J. Phys. B, At. Mol. Opt. Phys. 45, 074006 (2012)

    Article  ADS  Google Scholar 

  24. W. Schottky, Phys. Z 15, 872 (1914)

    Google Scholar 

  25. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M.A. Kasevich, Phys. Rev. Lett. 96, 077401 (2006)

    Article  ADS  Google Scholar 

  26. G.S. Voronov, N.B. Delone, JETP Lett. 1, 66 (1965)

    ADS  Google Scholar 

  27. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42(17), 1127 (1979)

    Article  ADS  Google Scholar 

  28. G. Farkas, C. Tóth, A. Kőházi-Kis, Opt. Eng. 32(10), 2476 (1993)

    Article  ADS  Google Scholar 

  29. M. Aeschlimann, C.A. Schmuttenmaer, H.E. Elsayed-Ali, R.J.D. Miller, J. Cao, Y. Gao, D.A. Mantell, J. Chem. Phys. 102(21), 8606 (1995)

    Article  ADS  Google Scholar 

  30. N.B. Delone, V.P. Krainov, Multiphoton Processes in Atoms (Springer, Berlin, 1994)

    Book  Google Scholar 

  31. P.H. Bucksbaum, R.R. Freeman, M. Bashkansky, T.J. McIlrath, J. Opt. Soc. Am. B 4(5), 760 (1987)

    Article  ADS  Google Scholar 

  32. N.E. Christensen, B. Feuerbacher, Phys. Rev. B 10, 2349 (1974)

    Article  ADS  Google Scholar 

  33. G. Saathoff, L. Miaja-Avila, M. Aeschlimann, M.M. Murnane, H.C. Kapteyn, Phys. Rev. A 77(2), 022903 (2008)

    Article  ADS  Google Scholar 

  34. G.G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos, H. Walther, Phys. Rev. Lett. 72, 2851 (1994)

    Article  ADS  Google Scholar 

  35. G. Wachter, C. Lemell, J. Burgdörfer, M. Schenk, M. Krüger, P. Hommelhoff, ArXiv e-prints 1201.0462 (2012)

  36. F.H.M. Faisal, J.Z. Kamiński, E. Saczuk, Phys. Rev. A 72(2), 023412 (2005)

    Article  ADS  Google Scholar 

  37. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  38. H.W. Fink, Phys. Scr. 38, 260 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  39. T.Y. Fu, L.C. Cheng, C.H. Nien, T.T. Tsong, Phys. Rev. B 64(11), 113401 (2001)

    Article  ADS  Google Scholar 

  40. H.S. Kuo, I.S. Hwang, T.Y. Fu, J.Y. Wu, C.C. Chang, T.T. Tsong, Nano Lett. 4(12), 2379 (2004)

    Article  ADS  Google Scholar 

  41. C.C. Chang, H.S. Kuo, I.S. Hwang, T.T. Tsong, Nanotechnology 20, 115401 (2009)

    Article  ADS  Google Scholar 

  42. P. Hommelhoff, C. Kealhofer, A. Aghajani-Talesh, Y.R. Sortais, S.M. Foreman, M.A. Kasevich, Ultramicroscopy 109(5), 423 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hommelhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krüger, M. et al. (2013). From Above-Threshold Photoemission to Attosecond Physics at Nanometric Tungsten Tips. In: Yamanouchi, K., Midorikawa, K. (eds) Progress in Ultrafast Intense Laser Science. Springer Series in Chemical Physics, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35052-8_12

Download citation

Publish with us

Policies and ethics