Skip to main content

The Influence of the Number of Initial Feasible Solutions on the Performance of an Evolutionary Optimization Algorithm

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7673))

Abstract

Constrained optimization is a well-known research topic in the evolutionary computation field. In these problems, the selected solution must be feasible. In evolutionary constrained optimization, the search space is usually much bigger than the feasible space of the problem. There is a general view that the presence or absence of any feasible individuals in the initial population substantially influences the performance of the algorithm. Therefore, the aim of this research is to analyze the effect of the number of feasible individuals, in the initial population, on the algorithm’s performance. For experimentation, we solve a good number of well-known bench-mark problems using a Differential Evolution algorithm. The results show that the algorithm performs slightly better, for the test problems solved, when the initial population contains about 5% feasible individuals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization Problems. Computers and Operations Research 38, 1877–1896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Elsayed, S.M., Sarker, R.A., Essam, D.L.: GA with a new multi-parent crossover for constrained optimization. In: IEEE Congress on Evolutionary Computation, pp. 857–864 (2011)

    Google Scholar 

  4. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, MA (1989)

    MATH  Google Scholar 

  5. Powell, M.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G. (ed.) Numerical Analysis, pp. 144–157. Springer, Heidelberg (1978)

    Chapter  Google Scholar 

  6. Singh, H.K., Ray, T., Smith, W.: Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

    Google Scholar 

  7. Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization. In: The 2005 Conference on Genetic and Evolutionary Computation, pp. 225–232. ACM, Washington DC (2005)

    Chapter  Google Scholar 

  8. Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation 9, 1–17 (2005)

    Article  Google Scholar 

  9. Vieira, D.A.G., Adriano, R.L.S., Vasconcelos, J.A., Krahenbuhl, L.: Treating constraints as objectives in multiobjective optimization problems using niched Pareto genetic algorithm. IEEE Transactions on Magnetics 40, 1188–1191 (2004)

    Article  Google Scholar 

  10. Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility Driven Evolutionary Algorithm for Constrained Optimization. In: Mezura-Montes, E. (ed.) Constraint-Handling in Evolutionary Optimization. SCI, vol. 198, pp. 145–165. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Barkat-Ullah, A.S.S.M., Sarker, R., Cornforth, D.: Search space reduction technique for constrained optimization with tiny feasible space. In: The 10th Annual Conference on Genetic and Evolutionary Computation, Atlanta, GA, USA, pp. 881–888 (2008)

    Google Scholar 

  12. Barkat-Ullah, A.S.S.M., Elfeky, E.Z., Cornforth, D., Essam, D.L., Sarker, R.: Improved evolutionary algorithms for solving constrained optimization problems with tiny feasible space. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1426–1433 (2008)

    Google Scholar 

  13. Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2010 competition and special session on single objective constrained real-parameter optimization. Technical Report, Nangyang Technological University, Singapore (2010)

    Google Scholar 

  14. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: 6th Int. Mendel Conference on Soft Computing, Brno, Czech Republic, pp. 76–83 (2000)

    Google Scholar 

  15. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: IEEE Congress on Evolutionary Computation, pp. 980–1987 (2004)

    Google Scholar 

  16. Elsayed, S.M., Sarker, R.A., Ray, T.: Parameters Adaptation in Differential Evolution. In: IEEE Congress on Evolutionary Computation (accepted, 2012)

    Google Scholar 

  17. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello, C.A.C., Deb, K.: Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization. Technical Report, Nanyang Technological University, Singapore (2005)

    Google Scholar 

  18. Deb, K.: An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods in Applied Mechanics and Engineering 186, 311–338 (2000)

    Article  MATH  Google Scholar 

  19. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach. John Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elsayed, S.M., Sarker, R.A., Essam, D.L. (2012). The Influence of the Number of Initial Feasible Solutions on the Performance of an Evolutionary Optimization Algorithm. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds) Simulated Evolution and Learning. SEAL 2012. Lecture Notes in Computer Science, vol 7673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34859-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34859-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34858-7

  • Online ISBN: 978-3-642-34859-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics