Skip to main content

Neurodynamical Top-Down Processing during Auditory Attention

  • Conference paper
  • 2812 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7664))

Abstract

Understanding the neural dynamics underlying the fast discrimination of music and speech in noise is a very challenging task for neurocomputational and speech recognition models. In this paper, we present a model of interacting neural ensembles which includes a top-down modulation of the peripheral system dynamics, based on bottom-up perceptual predictions. This bi-directional processing could enable the detection of sudden changes in the input sounds in noise; advancing in the understanding of how listeners can improve their perception by focusing their attention. Our preliminary work opens the possibility of developing a pioneering class of neurophysiological-based speech processors for cochlear implants and speech recognition devices under degraded conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nahum, M., Nelken, I., Ahissar, M.: Low-Level Information and High-Level Perception: The Case of Speech in Noise. PLoS Biol. 6(5), e126 (2008)

    Google Scholar 

  2. Lecouteux, B., Vacher, M., Portet, F.: Distant Speech Recognition in a Smart Home: Comparison of Several Multisource ASRs in Realistic Conditions. In: Interspeech, pp. 2273–2276 (2011)

    Google Scholar 

  3. Grossberg, S., Kazerounian, S.: Laminar cortical dynamics of conscious speech perception: A neural model of phonemic restoration using subsequent context in noise. J. Acoust. Soc. Am. 130, 440–460 (2011)

    Article  Google Scholar 

  4. Andersson, S., Yamagishi, J., Clark, R.A.J.: Synthesis and evaluation of conversational characteristics in HMM-based speech synthesis. Speech Communication 54, 175–188 (2012)

    Article  Google Scholar 

  5. Parbery-Clark, A., Strait, D.L., Kraus, N.: Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia 49, 3338–3345 (2011)

    Article  Google Scholar 

  6. Balaguer-Ballester, E., Clark, N., Coath, M., Krumbholz, K., Denham, S.L.: Understanding pitch perception as a hierarchical process with top-down modulation. PLoS Comput. Biol. 5, e1000301 (2009), doi:101371/journalpcbi1000301

    Google Scholar 

  7. Kiebel, S.J., Daunizeau, J., Friston, K.J.: A Hierarchy of Time-Scales and the Brain. PLoS Comput. Biol. 4(11), e1000209, doi:10.1371/journal.pcbi.1000209

    Google Scholar 

  8. Carroll, J., Tiaden, S., Zeng, F.G.: Fundamental frequency is critical to speech perception in noise in combined acoustic and electric hearing. J. Acoust. Soc. Am. 130, 2054–2062 (2011)

    Article  Google Scholar 

  9. Guinan, J.: Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear & Hearing 27, 589–607 (2006)

    Article  Google Scholar 

  10. Ferry, R.T., Meddis, R.: A computer model of medial efferent suppression in the mammalian auditory system. J. Acoust. Soc. Am. 122, 3519–3526 (2007)

    Article  Google Scholar 

  11. de Boer, J., Thornton, A.R., Krumbholz, K.: What is the role of the medial olivocochlear system in speech-in-noise processing? J. of Neurophysiol. 107, 1301–1312 (2012)

    Article  Google Scholar 

  12. Maison, S., Micheyl, C., Collet, L.: Influence of focused auditory attention on cochlear activity in humans. Psychophysiology 38, 35–40 (2001)

    Article  Google Scholar 

  13. Lopez-Poveda, E.A., Meddis, R.: A human nonlinear cochlear filter bank. J. Acoust. Soc. Am. 110, 3107–3118 (2001)

    Article  Google Scholar 

  14. Balaguer-Ballester, E., Denham, S.L., Meddis, R.: A cascade autocorrelation model of pitch perception. J. Acoust. Soc. Am. 124, 2186–2195 (2008)

    Article  Google Scholar 

  15. Yoshida, J., Hasegawa, H., Kasuga, M.: Absolute threshold of hearing decreased by perceiving a previous sound. Acoust. Sci. & Tech. 28, 385–391 (2007)

    Article  Google Scholar 

  16. Aghajan, H., López-Cózar Delgado, R., Augusto, J.C. (eds.): Human-Centric Interfaces for Ambient Intelligence. Elsevier (2010) ISBN: 978-0-12-374708-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balaguer-Ballester, E., Bouchachia, A., Jiang, B., Denham, S.L. (2012). Neurodynamical Top-Down Processing during Auditory Attention. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34481-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34481-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34480-0

  • Online ISBN: 978-3-642-34481-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics