Skip to main content

Decoding Network Activity from LFPs: A Computational Approach

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7663))

Included in the following conference series:

Abstract

Cognition is one of the main capabilities of mammal brain and understanding it thoroughly requires decoding brain’s information processing pathways which are composed of networks formed by complex connectivity between neurons. Mostly, scientists rely on local field potentials (LFPs) averaged over a number of trials to study the effect of stimuli on brain regions under investigation. However, this may not be the right approach when trying to understand the exact neuronal network underlying the neuronal signals. As the LFPs are lumped activity of populations of neurons, their shapes provide fingerprints of the underlying networks. The method presented in this paper extracts shape information of the LFPs, calculate the corresponding current source density (CSD) from the LFPs and decode the underlying network activity. Through simulated LFPs it has been found that differences in LFP shapes lead to different network activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maschietto, M., Mahmud, M., Girardi, S., Vassanelli, S.: A High Resolution Bi–Directional Communication through a Brain–Chip Interface. In: ECSIS Symposium on Advanced Technologies for Enhanced Quality of Life (AT-EQUAL 2009)., pp. 32–35 (2009)

    Google Scholar 

  2. Legatt, A., Arezzo, J., Vaughan, H.G.: Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume–conducted potentials. J. Neurosci. Meth. 2, 203–217 (1980)

    Article  Google Scholar 

  3. van Hemmen, J., Ritz, R.: Neural Coding: A Theoretical Vista of Mechanisms, Techniques, and Applications. In: Andersson, S.I. (ed.) Analysis of Dynamical and Cognitive Systems. LNCS, vol. 888, pp. 75–119. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: Automatic detection of layer activation order in information processing pathways of rat barrel cortex under mechanical whisker stimulation. In: 32nd Intl. Conf. of IEEE EMBS, pp. 6095–6098 (2010)

    Google Scholar 

  5. Mahmud, M., et al.: An Automated Method for the Detection of Layer Activation Order in Information Processing Pathways of Rat Barrel Cortex under Mechanical Whisker Stimulation. J. Neurosci. Meth. 196, 141–150 (2011)

    Article  Google Scholar 

  6. Okun, M., Naim, A., Lampl, I.: The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J. Neurosci. 30, 4440–4448 (2010)

    Article  Google Scholar 

  7. Bedard, C., Kroger, H., Destexhe, A.: Modeling Extracellular Field Potentials and the Frequency-Filtering Properties of Extracellular Space. Biophysical Journal 86(3), 1829–1842 (2004)

    Article  Google Scholar 

  8. Ahrens, K.F., Kleinfeld, D.: Current flow in vibrissa motor cortex can phase–lock with exploratory rhythmic whisking in rat. J. Neurophysiol. 92, 1700–1707 (2004)

    Article  Google Scholar 

  9. Kublik, E.: Contextual impact on sensory processing at the barrel cortex of awake rat. Acta. Neurobiol. 64, 229–238 (2004)

    Google Scholar 

  10. Mahmud, M., et al.: A Contour Based Automatic Method to Classify Local Field Potentials Recorded from Rat Barrel Cortex. In: 5th Cairo Intl. Biomed. Eng. Conf., pp. 163–166 (2010)

    Google Scholar 

  11. Mahmud, M., et al.: An Automated Method for Clustering Single Sweep Local Field Potentials Recorded from Rat Barrel Cortex. In: 2011 ISSNIP Biosignals and Biorobotics Conf., pp. 1–5 (2011)

    Google Scholar 

  12. Mahmud, M., Travalin, D., Hussain, A., Girardi, S., Maschietto, M., Felderer, F., Vassanelli, S.: Single LFP Sorting for High-Resolution Brain-Chip Interfacing. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS, vol. 7366, pp. 329–337. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Nunez, P.L.: Electric Fields of the Brain: The Neurophysics of EEG. Oxford University Press, Oxford (1981)

    Google Scholar 

  14. Koch, C., Segev, I.: Methods in Neuronal Modeling, 2nd edn. MIT Press, Cambridge (1998)

    Google Scholar 

  15. Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley Symp. Math. Statist. and Prob., vol. 1, pp. 281–297 (1967)

    Google Scholar 

  16. Bock, H.H.: Clustering methods: a history of K–Means algorithms. In: Brito, P., Cucumel, G., Bertrand, P., Carvalho, F. (eds.) Selected Contributions in Data Analysis and Classification, pp. 161–172 (2007)

    Google Scholar 

  17. Chiang, M.M.T., Mirkin, B.: Intelligent choice of the number of clusters in K-Means clustering: an experimental study with different cluster spreads. J. Classif. 27, 3–40 (2010)

    Article  MathSciNet  Google Scholar 

  18. Pettersen, K.H., Devor, A., Ulbert, I., Dale, A.M., Einevoll, G.T.: Currentsource density estimation based on inversion of electrostatic forward solution: Effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 11633 (2006)

    Article  Google Scholar 

  19. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: SigMate: a Matlab–based neuronal signal processing tool. In: 32nd Intl. Conf. of IEEE EMBS, pp. 1352–1355 (2010)

    Google Scholar 

  20. Mahmud, M., et al.: SigMate: A Comprehensive Software Package for Extracellular Neuronal Signal Processing and Analysis. In: 5th Intl. Conf. on Neural Eng., pp. 88–91 (2011)

    Google Scholar 

  21. Mahmud, M., Bertoldo, A., Girardi, S., Maschietto, M., Vassanelli, S.: SigMate: A MATLAB–based automated tool for extracellular neuronal signal processing and analysis. J. Nerusci. Methods 207, 97–112 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahmud, M., Travalin, D., Hussain, A. (2012). Decoding Network Activity from LFPs: A Computational Approach. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34475-6_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34474-9

  • Online ISBN: 978-3-642-34475-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics