Skip to main content

Morphogenetic Engineering: Reconciling Self-Organization and Architecture

  • Chapter
  • First Online:
Morphogenetic Engineering

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Generally, phenomena of spontaneous pattern formation are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both architectured and self-organized. Can we understand their precise self-formation capabilities and integrate them with technological planning? Can physical systems be endowed with information, or informational systems be embedded in physics, to create autonomous morphologies and functions? This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is set on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies.

This chapter is an extended version of Refs. [16, 17]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr, T.F., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM 43(5), 74–82 (2000)

    Google Scholar 

  2. Ball, P.: The Self-Made Tapestry. Oxford University Press, Oxford (1999)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, New York (2008)

    Google Scholar 

  5. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intell. Syst. 21(2), 10–19 (2006)

    Article  Google Scholar 

  6. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: languages for spatial computing. Comput. Res. Repos. abs/1202.5509 (2012)

    Google Scholar 

  7. Bentley, P., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 35–43. Morgan Kaufmann (1999)

    Google Scholar 

  8. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New. York (1999)

    Google Scholar 

  9. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  10. Bullock, S., Ladley, D., Kerby, M.: Wasps, termites and waspmites: distinguishing competence from performance in collective construction. Artif. Life 18(3), 267–290 (2012)

    Google Scholar 

  11. Carroll, S.B.: Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. W. W Norton, New York (2005)

    Google Scholar 

  12. Coen, E.: The Art of Genes. Oxford University Press, Oxford (2000)

    Google Scholar 

  13. Coore, D.N.: Botanical computing: a developmental approach to generating interconnect topologies on an amorphous computer. Ph.D. thesis, MIT (1999)

    Google Scholar 

  14. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)

    Google Scholar 

  15. Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing, Understanding Complex Systems, pp. 167–199. Springer (2008)

    Google Scholar 

  16. Doursat, R.: Morphogenetic engineering weds bio selforganization to human-designed systems. PerAda Mag. (2011)

    Google Scholar 

  17. Doursat, R.: The myriads of alife: importing complex systems and self-organization into engineering. In: Proceedings of the 3rd IEEE Symposium on Artificial Life (IEEE-ALIFE 2011), pp. xii-xix. IEEE (2011)

    Google Scholar 

  18. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 205–213 (1997)

    Google Scholar 

  19. Endy, D.: Foundations for engineering biology. Nature 438(7067), 449–453 (2005)

    Article  Google Scholar 

  20. Giavitto, J.L., Michel, O.: The topological structures of membrane computing. Fundamenta Informaticae 49(1–3), 123–145 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Biol. Cybern. 12(1), 30–39 (1972)

    Google Scholar 

  22. Goldstein, S., Campbell, J., Mowry, T.: Programmable matter. Computer 38(6), 99–101 (2005)

    Article  Google Scholar 

  23. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  24. Holland, J.H.: Adaptation in Natural and Artificial Systems, vol. 53. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  25. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554 (1982)

    Article  MathSciNet  Google Scholar 

  26. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  27. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  28. Knight, T.: Idempotent vector design for standard assembly of biobricks. Technical Report, DTIC Document (2003)

    Google Scholar 

  29. Kowaliw, T., Grogono, P., Kharma, N.: Bluenome: a novel developmental model of artificial morphogenesis. In: Genetic and Evolutionary Computation GECCO ’04, pp. 93–104. Springer (2004)

    Google Scholar 

  30. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)

    Article  Google Scholar 

  31. Malsburg, C.: Organic computing. In: Würtz, R.P. (ed.) Organic Computing, Understanding Complex Systems, chap. The Organic Future of Information Technology, pp. 7–24. Springer, New York (2008)

    Google Scholar 

  32. Marzano, S., Aarts, E.: The New Everyday View on Ambient Intelligence. Uitgeverij 010 Publishers, Rotterdam (2003)

    Google Scholar 

  33. Miller, J.F., Banzhaf, W.: Evolving the program for a cell: from french flags to boolean circuits. In: On Growth, Form and Computers, pp. 278–301. Academic Press, London (2003)

    Google Scholar 

  34. Minai, A.A., Braha, D., Bar-Yam, Y.: Complex engineered systems: science meets technology. In: Braha, D., Minai, A.A., Bar-Yam, Y. (eds.) Complex Engineered Systems: Science Meets Technology, Chap. Complex Engineered Systems: A New Paradigm, pp. 1–21. Springer, Cambridge (2006)

    Google Scholar 

  35. Nagpal, R.: Programmable self-assembly using biologically-inspired multiagent control. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: part 1, pp. 418–425. ACM (2002)

    Google Scholar 

  36. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  37. Nunes de Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. CRC Press, Boca Raton (2006)

    Google Scholar 

  38. Pearson, J.E.: Complex patterns in a simple system. Science 261(5118), 189–192 (1993)

    Article  Google Scholar 

  39. Pfeifer, R., Bongard, J., Grand, S.: How the Body Shapes the Way We Think: A New View of Intelligence. The MIT Press, Cambridge (2006)

    Google Scholar 

  40. Rothemund, P.W.K.: Folding dna to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  41. Sayama, H.: Swarm chemistry. Artif. Life 15(1), 105–114 (2009)

    Article  Google Scholar 

  42. Sims, K.: Evolving 3d morphology and behavior by competition. Artif. life 1(4), 353–372 (1994)

    Article  Google Scholar 

  43. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  44. Stepney, S., Braunstein, S.L., Clark, J.A., Tyrrell, A., Adamatzky, A., Smith, R.E., Addis, T., Johnson, C., Timmis, J., Welch, P., Milner, R., Partridge, D.: Journeys in non-classical computation i: a grand challenge for computing research. Int. J. Parallel Emergent Distrib. Syst. 20(1), 5–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  46. Ulieru, M., Doursat, R.: Emergent engineering: a radical paradigm shift. Int. J. Auton. Adapt. Commun. Syst. 4(1), 39–60 (2011)

    Article  Google Scholar 

  47. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  Google Scholar 

  48. Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)

    Article  Google Scholar 

  49. Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. IEEE Intell. Syst. 21(2), 20–28 (2006)

    Article  Google Scholar 

  50. Würtz, R.P.: Organic Computing. Springer, Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Doursat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doursat, R., Sayama, H., Michel, O. (2012). Morphogenetic Engineering: Reconciling Self-Organization and Architecture. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics