Skip to main content

A Beginner’s Guide to Systems Simulation in Immunology

  • Conference paper
Artificial Immune Systems (ICARIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7597))

Included in the following conference series:

  • 898 Accesses

Abstract

Some common systems modelling and simulation approaches for immune problems are Monte Carlo simulations, system dynamics, discrete-event simulation and agent-based simulation. These methods, however, are still not widely adopted in immunology research. In addition, to our knowledge, there is few research on the processes for the development of simulation models for the immune system. Hence, for this work, we have two contributions to knowledge. The first one is to show the importance of systems simulation to help immunological research and to draw the attention of simulation developers to this research field. The second contribution is the introduction of a quick guide containing the main steps for modelling and simulation in immunology, together with challenges that occur during the model development. Further, this paper introduces an example of a simulation problem, where we test our guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Louzoun, Y.: The evolution of mathematical immunology. Imm. Rev. 216, 9–20 (2007)

    Google Scholar 

  2. Gruber, J.: Models of Immune Systems: The Use of Differential Equations, http://www.lymenet.de/literatur/immundif.html (last accessed June 13, 2011)

  3. Eftimie, R., Bramson, J.L., Earn, D.J.: Interactions between the immune system and cancer: A brief review of non-spatial mathematical models. Bull. Math. Biol. (2010)

    Google Scholar 

  4. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. In: Proc. of the National Academy of Sciences of the United States of America, vol. 99, pp. 7280–7287 (2002)

    Google Scholar 

  5. Sauro, H.M., Harel, D., Kwiatkowska, M., Shaffer, C.A., Uhrmacher, A.M., Hucka, M., Mendes, P., Strömback, L., Tyson, J.J.: Challenges for modeling and simulation methods in systems biology. In: Winter Simulation Conference, pp. 1720–1730 (2006)

    Google Scholar 

  6. Østreng, W.: Reductionism versus Holism – Contrasting Approaches? In: Consilience. Interdisciplinary Communications 2005/2006. Centre for Advanced Study, Oslo, pp. 11–14 (2007)

    Google Scholar 

  7. Fachada, N., Lopes, V., Rosa, A.: Agent-based modelling and simulation of the immune system: a review. In: EPIA 2007 - 13th Portuguese Conference on Artificial Intelligence (2007)

    Google Scholar 

  8. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  9. Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  10. Andrews, P.S., Polack, F.A.C., Sampson, A.T., Stepney, S., Timmis, J.: The CoSMoS process version 0.1: A process for the modelling and simulation of complex systems. Technical Report YCS-2010-453, Department of Computer Science, University of York (2010)

    Google Scholar 

  11. Robinson, S.: Simulation: The Practice of Model Development and Use. John Wiley and sons, Ltd. (2004)

    Google Scholar 

  12. Silva, P.S., Trigo, A., Varajão, J., Pinto, T.: Simulation – Concepts and Applications. In: Lytras, M.D., Ordonez de Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds.) WSKS 2010. CCIS, vol. 112, pp. 429–434. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Babulak, E., Wang, M.: 1. In: Discrete Event Simulation: State of the Art, pp. 1–8. InTech (2010)

    Google Scholar 

  14. Banks, J., Carson, J., Nelson, B., Nicol, D.: Discrete-event system simulation, 4th edn. Pearson (2005)

    Google Scholar 

  15. Macal, C.M.: To agent-based simulation from system dynamics. In: Proc. of the 2010 Winter Simulation Conference (2010)

    Google Scholar 

  16. Schieritz, N., Milling, P.M.: Modeling the forrest or modeling the trees: A comparison of system dynamics and agent based simulation. In: Proc. of the XXI Int. Conference of the System Dynamics Society (2003)

    Google Scholar 

  17. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. Stat. Assoc. 44, 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  18. Forrester, J.W.: Industrial Dynamics. Pegasus Communications (1961)

    Google Scholar 

  19. Figueredo, G.P., Aickelin, U., Siebers, P.O.: Systems dynamics or agent-based modelling for immune simulation? In: Proc. of the Int. Conf. on AIS (2011)

    Google Scholar 

  20. Foan, S.J., Jackson, A.M., Spendlove, I., Aickelin, U.: Simulating the dynamics of T cell subsets throughout the lifetime. In: Proc. of the Int. Conf. on AIS (2011)

    Google Scholar 

  21. Siebers, P.O., Aickelin, U.: Introduction to Multi-Agent Simulation. In: Encyclopaedia of Decision Making and Decision Support Technologies, pp. 554–564 (2007)

    Google Scholar 

  22. Tako, A.A., Robinson, S.: Comparing model development in discrete event simulation and system dynamics. In: Rossetti, M.D., Hill, R., Dunkin, A., Ingalls, R.G. (eds.) Proc. of the 2009 Winter Simulation Conference, pp. 979–990 (2009)

    Google Scholar 

  23. Look, A.T., Schriber, T.J., Nawrocki, J.F., Murphy, W.H.: Computer simulation of the cellular immune response to malignant lymphoid cells: logic of approach, model design and laboratory verification. Immunology 43, 677–690 (1981)

    Google Scholar 

  24. Zand, M.S., Briggs, B., Bose, A., Vo, T.: Discrete event modeling of CD4+ memory T cell generation. The Journal of Immunology 173, 3763–3772 (2004)

    Google Scholar 

  25. Figge, M.T.: Stochastic discrete event simulation of germinal center reactions. Phys. Rev. E 71, 51907 (2005)

    Article  MathSciNet  Google Scholar 

  26. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 5, 601–644 (1983)

    Article  MathSciNet  Google Scholar 

  27. Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In: Proc. of the 2005 Winter Simulation Conference (2005)

    Google Scholar 

  28. ImmunoGrid. The European Virtual Immune System Project, www.immunogrid.eu (last accessed July 15, 2012)

  29. Thorne, B.C., Bailey, A.M., Pierce, S.M.: Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Briefings in Bioinformatics 8, 245–257 (2007)

    Article  Google Scholar 

  30. Jerne, N.K.: Towards a network theory of the immune system. Ann. Immunol (Inst. Pasteur) 125C, 73–89 (1974)

    Google Scholar 

  31. Baltcheva, I., Codarri, L., Pantaleo, G., Boudec, J.Y.L.: Lifelong Dynamics of Human CD4 + CD25 +  Regulatory T Cells: Insights from in vivo Data and Mathematical Modeling. Journal of Theoretical Biology 266, 307–322 (2010)

    Article  Google Scholar 

  32. Kotiadis, K., Robinson, S.: Conceptual modelling: Knowledge acquisition and model abstraction. In: Madon, S.J., Hill, R.R., Mönch, L., Rose, O., Jefferson, T., Fowler, J.W. (eds.) Proc. of the 2008 Winter Simulation Conference, pp. 951–958 (2008)

    Google Scholar 

  33. Ulgen, O.M., Black, J.J., Johnsonbaugh, B., Klungle, R.: Simulation methodology - a practitioner’s perspective. Int. Journal of Industrial Engineering, Applications and Practice 1 (1994)

    Google Scholar 

  34. Daigle, J.: Human immune system simulation: A survey of current approaches. Georgia State University (2006)

    Google Scholar 

  35. Murray, J.M., Kaufmann, G.R., Hodgkin, P.D., Lewin, S.R., Kelleher, A.D., Davenport, M.P., Zaunders, J.: Naive T cells are maintained by thymic output in early ages but by proliferation without phenotypic change after twenty. Immunology and Cell Biology 81, 487–495 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueredo, G.P., Siebers, PO., Aickelin, U., Foan, S. (2012). A Beginner’s Guide to Systems Simulation in Immunology. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds) Artificial Immune Systems. ICARIS 2012. Lecture Notes in Computer Science, vol 7597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33757-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33757-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33756-7

  • Online ISBN: 978-3-642-33757-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics