Skip to main content

Mining Dense Structures to Uncover Anomalous Behaviour in Financial Network Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7472))

Abstract

The identification of anomalous user behaviour is important in a number of application areas, since it may be indicative of fraudulent activity. In the work presented here, the focus is on the identification and subsequent investigation of suspicious interactions in a network of financial transactions. A network is constructed from data from a peer-to-peer lending system, with links between members representing the initiation of loans. The network is time-sliced to facilitate temporal analysis. Anomalous network structure is sought in the time-sliced network, illustrating the occurrences of unusual behaviour among members. In order to assess the significance of the dense structures returned the enrichment of member attributes within these structures is examined. It seems that dense structures are associated with geographic regions.

This work is supported by Science Foundation Ireland under Grant No. 08/SRC/I1407.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  2. Subelj, L., Furlan, S., Bajec, M.: An expert system for detecting automobile insurance fraud using social network analysis. Expert Systems with Applications 38(1), 1039–1052 (2011)

    Article  Google Scholar 

  3. Wan-Shiou Yang, S.Y.H.: A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst. Appl., 56–68 (2006)

    Google Scholar 

  4. Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Patil, S., Flammini, A., Menczer, F.: Truthy: mapping the spread of astroturf in microblog streams. In: Proceedings of the 20th International Conference Companion on World Wide Web (WWW 2011), pp. 249–252. ACM (2011)

    Google Scholar 

  5. Morselli, C., Giguère, C., Petit, K.: The efficiency/security trade-off in criminal networks. Social Networks 29(1), 143–153 (2007)

    Article  Google Scholar 

  6. Reuter, P., Truman, E.M.: Chasing Dirty Money: The Fight Against Money Laundering. Peterson Institute (2004)

    Google Scholar 

  7. Cortes, C., Pregibon, D., Volinsky, C.: Communities of Interest. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 105–114. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Pandit, S., Chau, D.H., Wang, S., Faloutsos, C.: NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks. In: Proceedings of the 16th International Conference on World Wide Web (2007)

    Google Scholar 

  9. Fortunato, S.: Community Detection in Graphs. Physics Reports 486(3-5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  10. Bron, C., Kerbosch, J.: Algorithm 457: Finding All Cliques of an Undirected Graph. Communications of the ACM 16(9), 575–577 (1971)

    Article  Google Scholar 

  11. Seidman, S., Foster, B.: A Graph-Theoretic Generalization of the Clique Concept. Journal of Mathematical Sociology 6, 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Seidman, S.: Network Structure and Minimum Degree. Social Networks 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  13. Cohen, J.: Graph Twiddling in a MapReduce World. IEEE Computing in Science & Engineering 11(4), 29–41 (2009)

    Google Scholar 

  14. Cohen, J.: Trusses: Cohesive Subgraphs for Social Network Analysis. Technical report, National Security Agency (2008)

    Google Scholar 

  15. Holme, P., Saramäki, J.: Temporal networks. CoRR abs/1108.1780 (2011)

    Google Scholar 

  16. Vanetik, N., Gudes, E., Shimony, S.E.: Computing Frequent Graph Patterns from Semistructured Data. In: Proceedings of the International Conference on Data Minning, pp. 458–465 (2002)

    Google Scholar 

  17. Kuramochi, M., Karypis, G.: Grew: A Scalable Frequent Subgraph Discovery Algorithm. In: Proceedings of the IEEE International Conference on Data Mining (2004)

    Google Scholar 

  18. Kuramochi, M., Karypis, G.: Finding Frequent Patterns in a Large Sparse Graph. Data Mining and Knowledge Discovery 11, 243–271 (2005)

    Article  MathSciNet  Google Scholar 

  19. Yan, X., Yu, P., Han, J.: Graph Indexing: A Frequent Structure-Based Approach. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 335–346 (2004)

    Google Scholar 

  20. Cheng, J., Ke, Y., Ng, W., Lu, A.: FG-Index: Towards Verification-Free Query Processing on Graph Databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 857–872 (2007)

    Google Scholar 

  21. Xiong, L., Liu, L.: A reputation-based trust model for peer-to-peer ecommerce communities. In: Proceedings of the 4th ACM Conference on Electronic Commerce (EC 2003), pp. 228–229. ACM (2003)

    Google Scholar 

  22. Python Software Foundation: Python (2012), http://www.python.org

  23. NetworkX Developers: NetworkX (2010), networkx.lanl.gov

  24. Hunter, J., Dale D., Droettboom M.: matplotlib (2011), matplotlib.sourceforge.net

  25. Gephi: Gephi (2012), gephi.org

  26. Rivals, I., Personnaz, L., Taing, L., Potier, M.: Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23(4), 401–407 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Redmond, U., Harrigan, M., Cunningham, P. (2012). Mining Dense Structures to Uncover Anomalous Behaviour in Financial Network Data. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds) Modeling and Mining Ubiquitous Social Media. MUSE MSM 2011 2011. Lecture Notes in Computer Science(), vol 7472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33684-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33684-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33683-6

  • Online ISBN: 978-3-642-33684-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics