Skip to main content

Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology

  • Conference paper
Distributed Computing (DISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7611))

Included in the following conference series:

Abstract

Initial knowledge regarding group size can be crucial for collective performance. We study this relation in the context of the Ants Nearby Treasure Search (ANTS) problem [18], which models natural cooperative foraging behavior such as that performed by ants around their nest. In this problem, k (probabilistic) agents, initially placed at some central location, collectively search for a treasure on the two-dimensional grid. The treasure is placed at a target location by an adversary and the goal is to find it as fast as possible as a function of both k and D, where D is the (unknown) distance between the central location and the target. It is easy to see that T = Ω(D + D 2/k) time units are necessary for finding the treasure. Recently, it has been established that O(T) time is sufficient if the agents know their total number k (or a constant approximation of it), and enough memory bits are available at their disposal [18]. In this paper, we establish lower bounds on the agent memory size required for achieving certain running time performances. To the best our knowledge, these bounds are the first non-trivial lower bounds for the memory size of probabilistic searchers. For example, for every given positive constant ε, terminating the search by time O(log1 − ε k ·T) requires agents to use Ω(loglogk) memory bits.

From a high level perspective, we illustrate how methods from distributed computing can be useful in generating lower bounds for cooperative biological ensembles. Indeed, if experiments that comply with our setting reveal that the ants’ search is time efficient, then our theoretical lower bounds can provide some insight on the memory they use for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biological solution to a fundamental distributed computing problem. Science 331(6014), 183–185 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, 319 p. Kluwer (now Springer) Academic Publishers (2003)

    Google Scholar 

  3. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. on Computing 29, 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Averbakh, I., Berman, O.: (p − 1)/(p + 1)-approximate algorithms for p-traveling salesmen problems on a tree with minmax objective. Discr. Appl. Mathematics 75, 201–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in The Plane. Information and Computation 106(2), 234–252 (1991)

    Article  MathSciNet  Google Scholar 

  6. Berkolaiko, G., Havlin, S.: Territory covered by N Levy flights on d-dimensional lattices. Physical Review. E 55(2), 1395–1400 (1999)

    Article  Google Scholar 

  7. Bialek, W.: Physical limits to sensation and perception. Annual Review of Biophysics and Biophysical Chemistry 16, 455–478 (1987)

    Article  Google Scholar 

  8. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. In: Proc. 23th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233–240 (2012)

    Google Scholar 

  9. Le Breton, J., Fourcassié, V.: Information transfer during recruitment in the ant Lasius niger L (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology 55(3), 242–250 (2004)

    Article  Google Scholar 

  10. Burroughs, N.J., de, M., de Oliveira, B.M.P.M., Adrego, P.A.: Regulatory Tcell adjustment of quorum growth thresholds and the control of local immune responses. J. of Theoretical Biology 241, 134–141 (2006)

    Article  Google Scholar 

  11. Chazelle, B.: Natural algorithms. In: SODA 2009, pp. 422–431 (2009)

    Google Scholar 

  12. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-Guided Graph Exploration by a Finite Automation. ACM Transactions on Algorithms (TALG) 4(4) (2008)

    Google Scholar 

  13. Dessmark, A., Pelc, A.: Optimal Graph Exploration without Good Maps. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 374–386. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. In: SODA 2002, pp. 588–597 (2002)

    Google Scholar 

  15. Emek, Y., Fraigniaud, P., Korman, A., Rosen, A.: Online Computation with Advice. Theoretical Computer Science (TCS) 412(24), 2642–2656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feare, C.J., Dunnet, G.M., Patterson, I.J.: Ecologicalstudies of the rook (Corvus frugilegus L.) in north-east Scotland; Food intake and feeding behaviour. J. of Applied Ecology 11, 867–896 (1974)

    Article  Google Scholar 

  17. Feinerman, O., Jentsch, G., Tkach, K.E., Coward, J.W., Hathorn, M.M., Sneddon, M.W., Emonet, T., Smith, K.A., Altan-Bonnet, G.: Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Molecular Systems Biology 6(437) (2010)

    Google Scholar 

  18. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the Plane without Communication. To appear in PODC 2012 (2012)

    Google Scholar 

  19. Feinerman, O., Veiga, J., Dorfman, J.R., Germain, R.N., Altan-Bonnet, G.: Variability and robustness in T Cell activation from regulated heterogeneity in protein levels. Science 321(5892), 1081–1084 (2008)

    Article  Google Scholar 

  20. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. TCS 411, 1583–1598 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)

    Article  MathSciNet  Google Scholar 

  22. Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective Tree Exploration. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication tasks. In: PODC 2006, pp. 179–187 (2006)

    Google Scholar 

  24. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST Computation with Short Advice. Theory of Computing Systems (ToCS) 47(4), 920–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: FOCS 2011 (2011)

    Google Scholar 

  27. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: SODA (2007)

    Google Scholar 

  28. Giraldeau, L.A., Carco, T.: Social Foraging Theory (2000)

    Google Scholar 

  29. Gordon, D.M.: The regulation of foraging activity in red harvester ant colonies. The American Naturalist 159(5), 509–518 (2002)

    Article  Google Scholar 

  30. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLOS Computational Biology 3(10), e189 (2007), doi:10.1371/journal.pcbi.0030189

    Google Scholar 

  31. Hanusse, N., Kavvadias, D.J., Kranakis, E., Krizanc, D.: Memoryless search algorithms in a network with faulty advice. TCS 402(2-3), 190–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Harkness, R.D., Maroudas, N.G.: Central place foraging by an ant (Cataglyphis bicolor Fab.): a model of searching. Animal Behavior 33(3), 916–928 (1985)

    Article  Google Scholar 

  33. Janeway, C.A., Travers, P., Walport, M., Shlomchik Immunobiology, M.J.: The Immune System in Health and Disease. Garland Science, New Yoy (2001)

    Google Scholar 

  34. Kao, M., Reif, J.H., Tate, S.R.: Searching in an Unknown Environment: An Optimal Randomized Algorithm for the Cow-Path Problem. J. of Inf. Comput., 63–79 (1996)

    Google Scholar 

  35. Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms: Removing Assumptions Concerning Global Knowledge. In: PODC 2011 (2011)

    Google Scholar 

  36. Korman, A., Kutten, S.: Distributed Verification of Minimum Spanning Trees. Distributed Computing (DC) 20(4) (2007)

    Google Scholar 

  37. Korman, A., Kutten, S., Peleg, D.: Proof Labeling Schemes. Distributed Computing (DC) 22(4) (2010)

    Google Scholar 

  38. Krebs, J.: Optimal foraging, predation risk and territory defense. Ardea 68, 83–90 (1980), Nederlandse Ornithlogische Unie

    Google Scholar 

  39. López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: CCCG 2011, pp. 125–128 (2001)

    Google Scholar 

  40. Orians, G.F., Pearson, N.E.: On the theory of central place foraging. Analysis of Ecological Systems, 155–177 (1979)

    Google Scholar 

  41. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. of Algorithms 33, 281–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Polycarpouy, M.M., Yang, Y., Passinoz, K.M.: A Cooperative Search Framework for Distributed Agents. In: Intelligent Control, pp. 1–6 (2001)

    Google Scholar 

  43. Pratt, S.C.: Quorum sensing by encounter rates in the ant Temnothorax albipennis. Behavioral Ecology 16(2), 488–496 (2005)

    Article  Google Scholar 

  44. Rieke, F., Warland, D., Bialek, W.: Coding efficiency and information rates in sensory neurons. Europhysics Letters 22(2), 15–156 (1993)

    Article  Google Scholar 

  45. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)

    Google Scholar 

  46. Reynolds, A.M.: Cooperative random Lévy flight searches and the flight patterns of honeybees. Physics Letters A 354, 384–388 (2006)

    Article  Google Scholar 

  47. Reynolds, A.M.: Optimal random Lévy-loop searching: New insights into the searching behaviours of central-place foragers. European Physics Letters 82(2), 20001 (2008)

    Article  Google Scholar 

  48. Sommer, S., Wehner, R.: The ant’s estimation of distance travelled: experiments with desert ants, Cataglyphis fortis. J. of Comparative Physiology A 190(1), 1–6 (2004)

    Article  Google Scholar 

  49. Srinivasan, M.V., Zhang, S., Altwein, M., Tautz, J.: Honeybee Navigation: Nature and Calibration of the Odometer. Science 287, 851–853 (2000)

    Article  Google Scholar 

  50. Surette, M.G., Miller, M.B., Bassler, B.L.: Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. National Acadamy of Science 96, 1639–1644 (1999)

    Article  Google Scholar 

  51. Town, C.D., Gross, J.D., Kay, R.R.: Cell differentiation without morphogenesis in Dictyostelium discoideum. Nature 262, 717–719 (1976)

    Article  Google Scholar 

  52. Wehner, R., Meier, C., Zollikofer, C.: The ontogeny of foraging behaviour in desert ants, Cataglyphis bicolor. Ecol. Entomol. 29, 240–250 (2004)

    Article  Google Scholar 

  53. Wehner, R., Srinivasan, M.Y.: Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J. of Comparative Physiology 142(3), 315–338 (1981)

    Article  Google Scholar 

  54. Zahavi, A.: The function of pre-roost gatherings and communal roosts. Ibis 113, 106–109 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feinerman, O., Korman, A. (2012). Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology. In: Aguilera, M.K. (eds) Distributed Computing. DISC 2012. Lecture Notes in Computer Science, vol 7611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33651-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33651-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33650-8

  • Online ISBN: 978-3-642-33651-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics