Skip to main content

Spinor Gravity and Diffeomorphism Invariance on the Lattice

  • Chapter
Quantum Gravity and Quantum Cosmology

Part of the book series: Lecture Notes in Physics ((LNP,volume 863))

Abstract

The key ingredient for lattice regularized quantum gravity is diffeomorphism symmetry. We formulate a lattice functional integral for quantum gravity in terms of fermions. This allows for a diffeomorphism invariant functional measure and avoids problems of boundedness of the action. We discuss the concept of lattice diffeomorphism invariance. This is realized if the action does not depend on the positioning of abstract lattice points on a continuous manifold. Our formulation of lattice spinor gravity also realizes local Lorentz symmetry. Furthermore, the Lorentz transformations are generalized such that the functional integral describes simultaneously euclidean and Minkowski signature. The difference between space and time arises as a dynamical effect due to the expectation value of a collective metric field. The quantum effective action for the metric is diffeomorphism invariant. Realistic gravity can be obtained if this effective action admits a derivative expansion for long wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Wetterich, Phys. Lett. B 704, 612 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. C. Wetterich, arXiv:1110.1539

  3. D. Diakonov, arXiv:1109.0091 [hep-th]

  4. H.W. Hamber, arXiv:0901.0964 [gr-qc]

  5. J. Ambjorn, J. Jurkiewicz, R. Loll, arXiv:1105.5582 [hep-lat]

  6. C. Rovelli, arXiv:1102.3660 [gr-qc]

  7. A. Hebecker, C. Wetterich, Phys. Lett. B 57, 269 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Wetterich, Phys. Rev. D 70, 105004 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Wetterich, Phys. Rev. Lett. 94, 011602 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Akama, Y. Chikashige, T. Matsuki, H. Terazawa, Prog. Theor. Phys. 60, 868 (1978)

    Article  ADS  Google Scholar 

  11. K. Akama, Prog. Theor. Phys. 60, 1900 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Amati, G. Veneziano, Phys. Lett. B 105, 358 (1981)

    Article  ADS  Google Scholar 

  13. G. Denardo, E. Spallucci, Class. Quantum Gravity, 89 (1987)

    Google Scholar 

  14. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  15. C. Wetterich, Nucl. Phys. B 211, 177 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Wetterich, Nucl. Phys. B 852, 174 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Itzykson, Fields on a random lattice, in Progess in Gauge Field Theory, Cargèse (1983)

    Google Scholar 

  18. T.D. Lee, in Discrete Mechanics, 1983. Erice School of Subnuclear Physics, vol. 21 (Plenum Press, New York, 1985)

    Google Scholar 

  19. J.B. Hartle, J. Math. Phys. 26, 804 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. H.W. Hamber, R.M. Williams, Nucl. Phys. B 435, 361 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Wetterich, Nucl. Phys. B 397, 299 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Wetterich, Nucl. Phys. B 302, 645 (1988)

    Article  ADS  Google Scholar 

  23. C. Wetterich, Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  24. Y. Fujii, Phys. Rev. D 26, 2580 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Weinberg, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979), p. 790

    Google Scholar 

  26. M. Reuter, Phys. Rev. D 57, 971 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Wetterich, Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  29. M. Reuter, C. Wetterich, Nucl. Phys. B 417, 181 (1994)

    Article  ADS  Google Scholar 

  30. E. Cartan, Ann. Sci. Ec. Norm. Super. 40, 325 (1923)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wetterich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wetterich, C. (2013). Spinor Gravity and Diffeomorphism Invariance on the Lattice. In: Calcagni, G., Papantonopoulos, L., Siopsis, G., Tsamis, N. (eds) Quantum Gravity and Quantum Cosmology. Lecture Notes in Physics, vol 863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33036-0_4

Download citation

Publish with us

Policies and ethics