Skip to main content

On Fulton’s Algorithm for Computing Intersection Multiplicities

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7442))

Included in the following conference series:

Abstract

As pointed out by Fulton in his Intersection Theory, the intersection multiplicities of two plane curves V(f) and V(g) satisfy a series of 7 properties which uniquely define I(p;f,g) at each point p ∈ V(f,g). Moreover, the proof of this remarkable fact is constructive, which leads to an algorithm, that we call Fulton’s Algorithm. This construction, however, does not generalize to n polynomials f 1, …, f n . Another practical limitation, when targeting a computer implementation, is the fact that the coordinates of the point p must be in the field of the coefficients of f 1, …, f n . In this paper, we adapt Fulton’s Algorithm such that it can work at any point of V(f,g), rational or not. In addition, we propose algorithmic criteria for reducing the case of n variables to the bivariate one. Experimental results are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comp. 28(1-2), 105–124 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berberich, E., Emeliyanenko, P., Sagraloff, M.: An elimination method for solving bivariate polynomial systems: Eliminating the usual drawbacks. CoRR, abs/1010.1386 (2010)

    Google Scholar 

  3. Bini, D., Mourrain, B.: Polynomial test suite, http://www-sop.inria.fr/saga/POL/ (accessed: April 1, 2012)

  4. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decompositions of polynomial systems. In: Proc. ISSAC 2011, pp. 83–90. ACM (2011)

    Google Scholar 

  5. Cheng, J.-S., Gao, X.-S.: Multiplicity preserving triangular set decomposition of two polynomials. CoRR, abs/1101.3603 (2011)

    Google Scholar 

  6. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Text in Mathematics, vol. 185. Springer, New York (1998)

    Book  MATH  Google Scholar 

  7. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. In: Proceedings of ISSAC 2005, pp. 116–123. ACM (2005)

    Google Scholar 

  8. Fulton, W.: Introduction to intersection theory in algebraic geometry. CBMS Regional Conference Series in Mathematics, vol. 54. Conference Board of the Mathematical Sciences, Washington, DC (1984)

    Google Scholar 

  9. Fulton, W.: Algebraic curves. Advanced Book Classics. Addison-Wesley (1989)

    Google Scholar 

  10. Kalkbrener, M.: A generalized euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comp. 15, 143–167 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirwan, F.: Complex algebraic curves. London Mathematical Society Student Texts, vol. 23. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  12. Knapp, A.W.: Cornerstones. In: Advanced algebra. Birkhäuser Boston Inc., Boston (2007), Along with a companion volume ıt Basic algebra

    Google Scholar 

  13. Labs, O.: A list of challenges for real algebraic plane curve visualization software. In: Emiris, I.Z., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geometry, pp. 137–164. Springer, New York (2010)

    Google Scholar 

  14. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comp. 15, 117–132 (1992)

    Article  MathSciNet  Google Scholar 

  15. Lemaire, F., Moreno Maza, M., Pan, W., Xie, Y.: When does (T) equal Sat(T)? In: Proc. ISSAC 2008, pp. 207–214. ACM Press (2008)

    Google Scholar 

  16. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library. In: Ilias, S. (ed.) Maple Conference 2005, pp. 355–368 (2005)

    Google Scholar 

  17. Li, Y.L., Xia, B., Zhang, Z.: Zero decomposition with multiplicity of zero-dimensional polynomial systems. CoRR, abs/1011.1634 (2010)

    Google Scholar 

  18. Shafarevich, I.R.: Basic algebraic geometry 1, 2nd edn. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  19. Wang, D.M.: Elimination Methods. Springer (2000)

    Google Scholar 

  20. Wu, W.T.: A zero structure theorem for polynomial equations solving. MM Research Preprints 1, 2–12 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marcus, S., Maza, M.M., Vrbik, P. (2012). On Fulton’s Algorithm for Computing Intersection Multiplicities. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32973-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32972-2

  • Online ISBN: 978-3-642-32973-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics