Skip to main content

A Dichotomy Theorem for Homomorphism Polynomials

  • Conference paper
Mathematical Foundations of Computer Science 2012 (MFCS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7464))

Abstract

In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H. We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edges and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P). We also demonstrate the hardness over ℚ of cut eliminator, a polynomial defined by Bürgisser which is known to be neither VP nor VNP-complete in \(\mathbb F_2\), if VP ≠ VNP (VP is the class of polynomials computable by arithmetic circuits of polynomial size).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagan, G.: Algorithmes et complexité des problèmes d’énumération pour l’évalution de requêtes logique. PhD thesis, Université de Caen/Basse-Normandie (2009)

    Google Scholar 

  2. Bulatov, A.A., Grohe, M.: The Complexity of Partition Functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 294–306. Springer, Heidelberg (2004), doi:10.1007/978-3-540-27836-8-27

    Chapter  Google Scholar 

  3. Briquel, I., Koiran, P.: A Dichotomy Theorem for Polynomial Evaluation. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 187–198. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Briquel, I.: Complexity issues in counting, polynomial evaluation and zero finding. PhD thesis, Lyon (2011)

    Google Scholar 

  5. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Springer (2000)

    Google Scholar 

  6. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Applied Mathematics 108(1–2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3-4), 260–289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durand, A., Mengel, S.: On polynomials defined by acyclic conjunctive queries and weighted counting problems. CoRR, abs/1110.4201 (2011)

    Google Scholar 

  9. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28(1), 57–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grohe, M., Thurley, M.: Counting homomorphisms and partition functions. CoRR, abs/1104.0185 (2011)

    Google Scholar 

  11. Hell, P., Nesetril, J.: Graphs and Homomorphisms. Oxford University Press (2004)

    Google Scholar 

  12. Mahajan, M., Raghavendra Rao, B.V.: Small-space analogues of valiant’s classes and the limitations of skew formulas. Computational Complexity (to appear)

    Google Scholar 

  13. Poizat, B.: À la recherche de la définition de la complexité d’espace pour le calcul des polynômes à la manière de valiant. Journal of Symbolic Logic 73 (2008)

    Google Scholar 

  14. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pp. 216–226. ACM, New York (1978)

    Chapter  Google Scholar 

  15. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC 1979, pp. 249–261. ACM, New York (1979)

    Chapter  Google Scholar 

  16. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Valiant, L.G.: Quantum computers that can be simulated classically in polynomial time. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 114–123. ACM, New York (2001)

    Chapter  Google Scholar 

  18. Welsh, D.J.A.: Complexity: knots, colourings and counting. London Mathematical Society Lecture Note Series. Cambridge University Press (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Rugy-Altherre, N. (2012). A Dichotomy Theorem for Homomorphism Polynomials. In: Rovan, B., Sassone, V., Widmayer, P. (eds) Mathematical Foundations of Computer Science 2012. MFCS 2012. Lecture Notes in Computer Science, vol 7464. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32589-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32589-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32588-5

  • Online ISBN: 978-3-642-32589-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics