Skip to main content

Topological and Geometric Data Handling for Time-Dependent Geo-Objects Realized in DB4GeO

  • Chapter
  • First Online:
Advances in Spatial Data Handling

Abstract

In advanced spatio-temporal scenarios, such as the simulation of complex geo-processes, the analysis of complex surface- and volume-based objects changing their locations and shapes in time is a central task. For example, the documentation of landfills, mass movements or volcanic activities requires 4D modeling based on dynamic geometric and topological database structures. In this contribution we present our concepts and implementation efforts for the effective handling of geospatial and time-dependent data realized in DB4GeO, a service-based geo-database architecture. The topological and geometric data models of DB4GeO are described in detail. A geoscientific application of an open-pit mine demonstrates the usefulness of the concepts introduced at the beginning of the paper. Finally, an outlook is given on future geo-database work dealing with extensions of DB4GeO and the handling of geo-objects in the context of cooperative 4D metro tracks planning

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an elaborate UML class diagram of the DB4GeO kernel geo-object model cf. Bär (2007), p. 65.

  2. 2.

    For a visual overview of the geometry model of DB4GeO, cf. Butwilowski and Breunig (2010).

  3. 3.

    This structure can be seen as the implicit topology model of the DB4GeO/DB3D core API.

  4. 4.

    For example, if it is necessary to find all neighboring segments to a given point.

  5. 5.

    i.e. of objects of the classes Node, Edge, Face and Solid.

  6. 6.

    These are not illustrated in Fig. 5 to reduce the diagram’s complexety.

  7. 7.

    Though, to be more precise, orbits are not only iterators but circulators (Devillers et al. 2011).

  8. 8.

    The OrbitIterator does not provide a remove() method (in conformity with the orbit definition).

References

  • Balovnev O, Bode T, Breunig M, Cremers AB, Möller W, Pogodaev G, Shumilov S, Siebeck J, Siehl A, Thomsen A (2004) The story of the geotoolkit–an object-oriented geodatabase kernel system. GeoInformatica 8(1):5–47

    Article  Google Scholar 

  • Bär W (2007) Verwaltung geowissenschaftlicher 3D daten in mobilen datenbanksystemen. Ph.D thesis, University of Osnabrück, Germany

    Google Scholar 

  • Baumgart BG (1975) A polyhedron representation for computer vision. In: Proceedings of 1975 national computer conference, AFIPS, pp 589–596, 19–22 May 1975

    Google Scholar 

  • Breunig M (2001) On the way to component-based 3D/4D geoinformation systems. Lecture notes in earth sciences, vol 94. Springer, Heidelberg, p 199

    Google Scholar 

  • Breunig M, Bode T, Cremers AB, (1994) Implementation of elementary geometric database operations for 3D-GIS. In: Waugh T, Healey R (eds) Proceedings of the 6th international symposium on spatial data handling, Edinburgh, pp 604–617

    Google Scholar 

  • Breunig M, Schilberg B, Thomsen A, Kuper PV, Jahn M, Butwilowski E (2010) DB4GeO, a 3D/4D geodatabase and its application for the analysis of landslides. Lecture notes geoinformation and cartography risk crisis management, pp 83–102

    Google Scholar 

  • Brisson E (1989) Representing geometric structures in d dimensions: topology and order. In: Proceedings of the 5th ACM symposium on computational geometry, ACM Press, Washington, pp 218–227

    Google Scholar 

  • Butwilowski E, Breunig M (2010) Requirements and implementation issues of a topology component in 3D geo-databases. Poster Abstract. In: Proceedings of the 13th AGILE international conference on geographic information science

    Google Scholar 

  • Devillers O, Kettner L, Pion S, Seel M, Yvinec M (2011) Handles, ranges and circulators, September 2011. http://www.cgal.org/Manual/latest/doc_html/cgal_manual/Circulator/Chapter_main.html. Accessed 06 Jan 2012

  • Döner F, Thompson R, Stoter J, Lemmen C, Ploeger H, van Oosterom P, Zlatanova S (2010) 4d cadastres: first analysis of legal, organizational and technical impact–with a case study on utility networks. Land Use Policy 27:1068–1081

    Article  Google Scholar 

  • Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans Internet Technol 2(2):115–150

    Article  Google Scholar 

  • Goodchild MF (1990) Keynote address: spatial information science. In: Proceedings, fourth international symposium on spatial data handling, Vol 1. Zurich, pp 13–14

    Google Scholar 

  • Kuper PV (2010) Entwicklung einer 4D objekt-verwaltung für die geodatenbank DB4GeO. University of Osnabrück, Germany, Diploma thesis

    Google Scholar 

  • Lautenbach S, Berlekamp J (2002) Data set for the visualization of Piesberg Landfill in Osnabrück. University of Osnabrück, Germany Institute of Environmental Systems Research

    Google Scholar 

  • Lévy B, Mallet J-L (1999) Cellular modeling in arbitrary dimension using generalized maps. http://www.alice.loria.fr/publications/papers/1999/g_maps/g_maps.pdf. Accessed 14 Dec 2011

  • Lienhardt P (1989) Subdivisions of n-dimensional spaces and n-dimensional generalized maps. Proceedings of the fifth annual symposium on computational geometry, Washington, ACM Press, In, pp 228–236

    Google Scholar 

  • Mäntylä M (1988) Introduction to solid modeling. Computer Science Press, Rockville

    Google Scholar 

  • Marble DF (ed) (1984) In: Proceedings, international symposium on spatial data handling, Zürich (1984) Geographisches Institut. Universität Zürich-Irchel, Abteilung Kartographie/EDV

    Google Scholar 

  • Pigot S (1992) A topological modeling for a 3D spatial information system. In: Proceedings of the 5th international symposium on spatial data handling, Charleston, South Carolina, pp 344–360

    Google Scholar 

  • Polthier K, Rumpf M (1995) A concept for time-dependent processes. Visualization in Scientific Computing, Springer, Berlin pp 137–153

    Google Scholar 

  • Pouliot J, Badard T, Desgagné E, Bédard K, Thomas K (2007) Development of a web geological feature server (WGFS) for sharing and querying of 3D objects. In: van Oosterom et al. (eds) Advances in 3D geoinformation systems–Lecture notes in geoinformation and cartography, pp 115–130

    Google Scholar 

  • Pouliot J, Bédard K, Kirkwood D, Lachance B (2008) Reasoning about geological space: coupling 3D geomodels and topological queries as an aid to spatial data selection. Comput Geosci 34(5):529–541

    Google Scholar 

  • Pouliot J, Roy T, Fouquet-Asselin G, Desgroseilliers J (2010) 3D Cadastre in the province of quebec: a first experiment for the construction of a volumetric representation. In: Kolbe GNC, Knig TH (eds) Advances in 3D geo-information sciences. Lecture notes geoinformation and cartography

    Google Scholar 

  • Rolfs C (2005) Konzeption und implementierung eines datenmodells zur verwaltung von zeitabhängigen 3D-modellen in geowissenschaftlichen anwendungen. University of Osnabrück, Germany, Diploma thesis

    Google Scholar 

  • Schaeben H, Apel M, Boogaart KGvd, Kroner U, (2003) GIS 2D, 3D, 4D, nD. Von geographischen zu geowissenschaftlichen informationssystemen. Informatik-Spektrum 26(3):173–179

    Google Scholar 

  • Strathoff F (1999) Speichereffiziente verwaltung zeitabhängiger geometrien für ein geotoolkit. University of Bonn, Germany, Diploma thesis

    Google Scholar 

  • Versant (2011) http://www.db4o.com. Accessed 22 Nov 2011

  • Weiler K (1985) Edge-based data structures for solid modeling in curved-surface environments. Comput Graph Appl 5(1):21–40

    Article  Google Scholar 

  • Weiler K (1986) The radial edge structure: a topological representation for non-manifold geometric boundary modeling. In: Proceedings of the IFIG WG 5.2

    Google Scholar 

  • Worboys MF (1992) A model for spatio-temporal information. In: Proceedings of the 5th international symposium on spatial data handling. Vol 1, pp 602–611

    Google Scholar 

Download references

Acknowledgments

We thank Jürgen Berlekamp from USF, Osnabrück University and the Survey Office of Osnabrück city for the permission to use the Piesberg dataset for scientific purposes.This research has been funded by the German Research Foundation (DFG), grant no. BR2128/12-1 and BR2128/14-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Breunig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Breunig, M., Butwilowski, E., Kuper, P.V., Golovko, D., Thomsen, A. (2013). Topological and Geometric Data Handling for Time-Dependent Geo-Objects Realized in DB4GeO. In: Timpf, S., Laube, P. (eds) Advances in Spatial Data Handling. Advances in Geographic Information Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32316-4_1

Download citation

Publish with us

Policies and ethics