Skip to main content

Laser-Induced Breakdown Spectroscopy Measurements for Dielectric Materials and Metals

  • Chapter
Advancement in Sensing Technology

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 1))

  • 2765 Accesses

Abstract

This chapter describes an optical sensing system for elemental analysis using laser-induced electro-avalanche fluorescence on wide bandgap materials, and laser-induced plasma on metal objects. This method of measurement and analysis is called “laser-induced breakdown spectroscopy” (LIBS). In LIBS, the vaporizing and exciting plasma is produced by high-powered focused laser pulses. Pulses from a laser are focused on the sample using a lens, and plasma emission light is collected and collimated using a second lens. The light is transported to a wavelength selective device on the spectrograph, and recorded time-resolved, or gate setting, devices to improve the signal-to-noise and signal-to-background ratio. This provides discrimination against interference from an emission continuum, called “bremsstrahlung.” Plasma light is initially dominated by a white light continuum, that has little intensity variation as a function of wavelength because of bremsstrahlung and radiation from the plasma as free electrons and ions recombine in the plasma cooling process. If the emission is recorded over the entire time, this light continuum seriously interferes with the detection of weaker emissions from atomic species. For this reason, temporal resolving measurement is carried out using LIBS. This chapter introduces a LIBS system applied to wide-bandgap materials like sodium, and metal objects containing small metal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brech, F., Cross, L.: Optical microemission stimulated by a ruby laser. Appl. Spectrosc. 16(2) (1962)

    Google Scholar 

  2. Gondal, M.A., Hussain, T., Yamani, Z.H., Baig, M.A.: On-line monitoring of remediation process of chromium-polluted soil using LIBS. J. Hazard. Mater. 163, 1265–1271 (2009)

    Article  Google Scholar 

  3. Hussain, T., Gondal, M.A.: Monitoring and assessment of toxic metals in Gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy. Environ. Monit. Assess. 136, 391–399 (2008)

    Article  Google Scholar 

  4. Kim, T., Specht, Z.G., Vary, P.S., Lin, C.T.: Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy. J. Phys. Chem. B 108, 5477–5482 (2004)

    Article  Google Scholar 

  5. Hotokezaka, H., Aoyagi, N., Kawahara, Y., Yamaguchi, N.U., Nagasaki, S., Sasaki, K., Tanaka, S.: Selective and in-situ determination of carbonate and oxide particles in aqueous solution using laser-induced breakdown spectroscopy (LIBS) for wearable information equipment. Microsystem Technologies 11(8-10), 974–979 (2005)

    Article  Google Scholar 

  6. Ajiro, T., Fujimori, H., Matsui, T., Izumi, S.: Particle size dependence of correlation between plasma emission delay time and plasma emission intensity of laser breakdown induced by particles. Jpn. J. Appl. Phys. 31(1, 9A), 2760–2761 (1992)

    Article  Google Scholar 

  7. Fujimori, H., Matsui, T., Ajiro, T., Yokose, K., Hsueh, Y.M., Izumi, S.: Detection of fine particles in liquids by laser breakdown method. Jpn. J. Appl. Phys. 31(1, 5A), 1514–1518 (1992)

    Article  Google Scholar 

  8. Hotokezaka, H., Tanaka, S., Suzuki, A., Nagasaki, S.: Speciation analysis on europium(III) using laser-induced breakdown spectroscopy. Radiochim. Acta 88, 645–648 (2000)

    Article  Google Scholar 

  9. Nakamura, S., Ito, Y., Sone, K., Hiraga, H., Kaneko, K.: Determination of an iron suspension in water by laser-induced breakdown spectroscopy with two sequential laser pulses. Anal. Chem. 68, 2981–2986 (1996)

    Article  Google Scholar 

  10. Rodriguez-Celis, E.M., Gornushkin, I.B., Heitmann, U.M., Almirall, J.R., Smith, B.W., Winefordner, J.D., Omenetto, N.: Laser induced breakdown spectroscopy as a tool for discrimination of glass for forensic applications. Anal. Bioanal. Chem. 391, 1961–1968 (2008)

    Article  Google Scholar 

  11. Baudelet, M., Guyon, L., Yu, J., Wolf, J.P., Amodeo, T., Frejafon, E., Laloi, P.: Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: A comparison to the nanosecond regime. J. Appl. Phys. 99, 084701 (2006)

    Article  Google Scholar 

  12. Sturm, V., Vrenegor, J., Noll, R., Hemmerlin, M.: Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo. J. Anal. At. Spectrom. 19, 451–456 (2004)

    Article  Google Scholar 

  13. Noll, R., Mönch, I., Klein, O., Lamott, A.: Concept and operating performance of inspection machines for industrial use based on laser-induced breakdown spectroscopy. Spectrochim. Acta B 60(7-8), 1070–1075 (2005)

    Article  Google Scholar 

  14. Osticioli, I., Wolf, M., Anglos, D.: An optimization of parameters for application of a laser-induced breakdown spectroscopy microprobe for the analysis of works of art. Appl. Spectrosc. 62, 1242–1249 (2008)

    Article  Google Scholar 

  15. Ciupiński, Ł., Fortuna-Zaleśna, E., Garbacz, H., Koss, A., Kurzydłowski, K.J., Marczak, J., Mróz, J., Onyszczuk, T., Rycyk, A., Sarzyński, A., Skrzeczanowski, W., Strzelec, M., Zatorska, A., Żukowska, G.Z.: Comparative laser spectroscopy diagnostics for ancient metallic artefacts exposed to environmental pollution. Sensors 10(5), 4926–4949 (2010)

    Article  Google Scholar 

  16. Radziemski, L., Cremers, D., Benelli, K., Khoo, C., Harris, R.D.: Use of the vacuum ultraviolet spectral region for LIBS-based Martian geology and exploration. Spectrochim. Acta B 60, 237–248 (2005)

    Article  Google Scholar 

  17. Sallé, B., Cremers, D.A., Maurice, S., Wiens, R.C.: Laser-induced breakdown spectroscopy for space exploration apprications: Influence of ambient pressure on the calibration curves prepared from soil and clay samples. Spectrochim. Acta B 60, 479–490 (2005)

    Article  Google Scholar 

  18. Sallé, B., Cremers, D.A., Maurice, S., Wiens, R.C.: Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples in Martian missions. Spectrochim. Acta B 60, 805–815 (2005)

    Article  Google Scholar 

  19. Sallé, B., Lacour, J.-L., Vors, E., Fichet, P., Maurice, S., Cremers, D.A., Wiens, R.C.: Laser-induced breakdown spectroscopy for Mars surface analysis: Capabilities at stand-off distance and detection of chlorine and sulfur elements. Spectrochim. Acta B 59, 1413–1422 (2004)

    Article  Google Scholar 

  20. Arp, Z.A., Cremers, D.A., Harris, R.D., Oschwald, D.M., Parker, G.R., Wayne, D.M.: Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission. Spectrochim. Acta B 59, 987–999 (2004)

    Article  Google Scholar 

  21. Arp, Z.A., Cremers, D.A., Wiens, R.C., Wayne, D.M., Sallé, B., Maurice, S.: Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: Application to Mars polar exploration. Appl. Spectrosc. 58, 897–909 (2004)

    Article  Google Scholar 

  22. Brennetot, R., Lacour, J.L., Vors, E., Rivoallan, A., Vailhen, D., Maurice, S.: Mars analysis by laser-induced breakdown spectroscopy (MALIS): Influence of Mars atmosphere on plasma emission and study of factors influencing plasma emission with the use of Doehlert designs. Appl. Spectrosc. 57, 744–752 (2003)

    Article  Google Scholar 

  23. Knight, A.K., Scherbarth, N.L., Cremers, D.A., Ferris, M.J.: Characterization of laser-induced breakdown spectroscopy (LIBS) for apprication to space exploration. Appl. Spectrosc. 54, 331–340 (2000)

    Article  Google Scholar 

  24. Sharma, S.K., Misra, A.K., Lucey, P.G., Clegg, S.M.: Combied remote LIBS and Raman spectroscopy of sulfur-containing minerals, and minerals coated with hematite and covered with basaltic dust at 8.6 m. Spectrochim. Acta A 68, 1036–1045 (2007)

    Article  Google Scholar 

  25. Wiens, R.C., Sharma, S.K., Thompson, J., Misra, A., Lucey, P.G.: Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochim. Acta A 61, 2324–2334 (2005)

    Article  Google Scholar 

  26. Fabre, C., Boiron, M.-C., Dubessy, J., Cathelineau, M., Banks, D.A.: Palaeofluid chemistry of a single fluid event: a bulk and in-situ multi-technique analysis (LIBS, Raman Spectroscopy) of an Alpine fluid (Mont-Blanc). Chem. Geol. 182, 249–264 (2002)

    Article  Google Scholar 

  27. Marquardt, B.J., Stratis, D.N., Cremers, D.A., Angel, S.M.: Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber. Appl. Spectrosc. 52, 1148–1153 (1998)

    Article  Google Scholar 

  28. Castillejo, M., Martín, M., Silva, D., Stratoudaki, T., Anglos, D., Burgio, L., Clark, R.J.H.: Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy. J. Mol. Struct. 550-551, 191–198 (2000)

    Article  Google Scholar 

  29. Effenberger Jr., A.J., Scott, J.R.: Effect of atmospheric conditions on LIBS spectra. Sensors 10, 4907–4925 (2010)

    Article  Google Scholar 

  30. Shu, R., Qi, H.X., Lu, G., Ma, D.M., He, Z.P., Xue, Y.Q.: Laser-induced breakdown spectroscopy based detection of lunar soil simulants for moon exploration. Chin. Opt. Lett. 5, 58–59 (2007)

    Google Scholar 

  31. Wiens, R.C., Maurice, S.: Chemcam’s cost a drop in the Mars bucket. Science 322, 1464–1464 (2008)

    Article  Google Scholar 

  32. Van Stryland, E.W., Soileau, M.J., Smirl, A.L., Williams, W.E.: Pulse-width and focal-volume dependence of laser-induced breakdown. Phys. Rev. B 23, 2144 (1981)

    Article  Google Scholar 

  33. Bandyopadhyay, P.K., Merkle, L.D.: Laser‐induced damage in quartz: A study of the influence of impurities and defects. J. Appl. Phys. 63 (1988)

    Google Scholar 

  34. Bonch-Bruevich, A.M., Khodovoi, V.A.: Multiphoton Process. Sov. Phys. Usp. No. 85, 3–64 (1965)

    Google Scholar 

  35. Archontaki, H.A., Crouch, S.R.: Evaluation of an isolated droplet sample introduction system for laser-induced breakdown spectroscopy. Appl. Spectrosc. 42(5), 741–746 (1988)

    Article  Google Scholar 

  36. Janzen, C., et al.: Analysis of small droplets with a new detector for liquid chromatography based on laser-induced breakdown spectroscopy. Spectrochim. Acta Part B 60, 993–1001 (2005)

    Article  Google Scholar 

  37. Kumar, A., Yueh, F.Y., Miller, T., Singh, J.P.: Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a Meinhard nebulizer. Appl. Optics 42(30), 6040–6046 (2003)

    Article  Google Scholar 

  38. Andreev, A., Ueda, T.: Simulation of laser plasma emission characteristics of small solid particles in different gas atmospheres at various pressures. Trans. IEE of Japan 121-E(11), 593–598 (2001)

    Article  Google Scholar 

  39. Hayashi, H., Ueda, T.: Measurement of particle size with laser induced breakdown. In: Proc. of SICE 1999, pp. 645–646 (1999)

    Google Scholar 

  40. Ueda, T., Okamoto, Y.: “In-situ status measurement technology. In: The 2nd Symp. on Advanced Photon Processing and Measurement Technol., pp. 38–44 (1998)

    Google Scholar 

  41. Wakamatsu, M., Ikezawa, S., Ueda, T.: Particle element and size simultaneous measurement using LIBS. IEEJ Trans. Sensors Micromach. 127(9), 397–402 (2007)

    Article  Google Scholar 

  42. Ikezawa, S., Wakamatsu, M., Pawlat, J., Ueda, T.: Sensing System for Multiple Measurements of Trace Elements Using Laser-induced Breakdown Spectroscopy. IEEJ Trans. Sensors Micromach. 129(4), 115–119 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ikezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ikezawa, S., Wakamatsu, M., Ueda, T. (2013). Laser-Induced Breakdown Spectroscopy Measurements for Dielectric Materials and Metals. In: Mukhopadhyay, S., Jayasundera, K., Fuchs, A. (eds) Advancement in Sensing Technology. Smart Sensors, Measurement and Instrumentation, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32180-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32180-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32179-5

  • Online ISBN: 978-3-642-32180-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics