Skip to main content

Dilute Acid Hydrolysis of Agro-Residues for the Depolymerization of Hemicellulose: State-of-the-Art

  • Chapter
  • First Online:
D-Xylitol

Abstract

Geo-political, long-term economic and sustainable concerns are promoting researchers and entrepreneurs to harness the potential of lignocellulosic feedstock (LCF) into industrially significant products. Agro-residues (sugarcane bagasse, wheat straw, rice straw, corn stover, etc.) constitute the principal fraction of LCF and are available in large amounts globally. The judicious exploration of agro-residues into important products such as d-xylitol, an artificial sweetener, may provide a strong platform for its sustainable supply to the medical and non-medical applications-based sectors. Pretreatment of agro-residues by dilute acid hydrolysis is an inevitable process for the depolymerisation of hemicellulosic fraction into xylose and other sugars. Dilute acid catalyses hemicellulose fractionation at high temperature within short reaction times. Significant developments have been made in the past towards the chemical hydrolysis of agro-residues, particularly for the hemicellulose breakdown. Critical parameters such as acid load, temperature, residence time and solid-to-liquid ratio play pivotal roles in the kinetics of dilute acid hydrolysis of agro-residues. Furthermore, reactor configurations such as counter-current, plug-flow, percolation and shrinking-bed have been designed in order to maximize the sugars recovery with minimum inhibitors generation. This chapter reviews the process parameters, kinetics, methods and reactor engineering for the dilute acid catalysed processes employed for agro-residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akpinar O, Erdogan K, Bostanci S (2009) Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohyd Res 344:660–666

    Article  CAS  Google Scholar 

  • Anupama A, Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18:459–479

    Article  PubMed  CAS  Google Scholar 

  • Baek S-C, Kwon Y-J (2007) Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol Bioproc Eng 12:404–419

    Article  CAS  Google Scholar 

  • Bösch P, Wallberg O, Joelsson E, Galbe M, Zacchi G (2010) Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production. Biotechnol Biofuels 3:15

    Article  PubMed  Google Scholar 

  • Boussarsar H, Rogé B, Mathlouthi M (2009) Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Biores Technol 100:6537–6542

    Article  CAS  Google Scholar 

  • Branco RF, Santos JC, Sarrouh BF, Rivaldi JD, Pessoa Jr A, Silva SS (2008) Profiles of xylose redutase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J Chem Technol Biotechnol 84:324–330

    Google Scholar 

  • Brunow G, Lundquist K, Gellerstedt G (1999) Lignin. In: Sjöström E, Alén R (eds) Analytical methods in wood chemistry, pulping, and paper making. Springer, Berlin, pp 77–124

    Google Scholar 

  • Bura R, Chandra R, Saddler J (2009) Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol Prog 25:315–322

    Article  PubMed  CAS  Google Scholar 

  • Canilha L, Carvalho W, Silva JBA (2006) Xylitol bioproduction from wheat straw: hemicellulose hydrolysis and hydrolyzate fermentation. J Sci Food Agric 86:1371–1376

    Article  CAS  Google Scholar 

  • Canilha L, Carvalho W, Felipe MGA, Silva JBA (2008) Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Braz J Microbiol 39:333–336

    Article  Google Scholar 

  • Canilha L, Santos VTO, Rocha GJM, Almeida e Silva JB, Giulietti M, Silva SS, Felipe MGA, Ferraz A, Milagres AMF, Carvalho W (2011) A study on the pretreatment of sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475

    Google Scholar 

  • Cao G, Ren N, Wang A, Lee DJ, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hyd Ener 34:7182–7188

    Article  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Medeiros R, Gírio FM (2004) Optimization of brewery’s spent grain dilute-acid hydrolysis for the production of pentose-rich culture media. Appl Biochem Biotechnol 113–116:1059–1072

    Article  PubMed  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  • Carvalho W, Canilha L, Silva SS (2007) Semi-continuous xylitol bioproduction in sugarcane bagasse hydrolysate: effect of nutritional supplementation. Rev Bras Cienc Farm 43:47–53

    Article  CAS  Google Scholar 

  • Chandel AK, Kapoor RK, Singh AK, Kuhad RC (2007a) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Biores Technol 98:1947–1950

    Article  CAS  Google Scholar 

  • Chandel AK, Chan EC, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007b) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chandel AK, Narasu ML, Rudravaram R, Ravindra P, Narasu ML, Rao LV (2009) Bioconversion of de-oiled rice bran (DORB) hemicellulosic hydrolysate into ethanol by Pichia stipitis NCIM3499 under optimized conditions. Int J Food Eng 2:1–12

    Google Scholar 

  • Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010a) Key-drivers influencing the commercialization of ethanol based biorefineries. J Comm Biotechnol 16:239–257

    Article  Google Scholar 

  • Chandel AK, Singh OV, Rao LV (2010b) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, Dordrecht, pp 63–81

    Google Scholar 

  • Chandel AK, Silva SS, Carvalho W, Singh OV (2011a) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20

    Article  Google Scholar 

  • Chandel AK, Silva SS, Singh OV (2011b) Detoxification of lignocellulosic hydrolysates for improved bioconversion of bioethanol. In: Bernardes MAS (ed) Biofuel production-recent developments and prospects. InTech, Rijeka

    Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, Silva SS (2011b) The realm of cellulases in biorefinery development. Crit Rev Biotechnol. doi:10.3109/07388551.2011.595385

  • Cheng K–K, Zhang J-A, Ling HZ, Ping W-X, Huang W, Ge J-P, Xu J-M (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207

    Article  CAS  Google Scholar 

  • Cruz JM, Domínguez H, Parajó JC (2000) Preparation of fermentation media from agricultural wastes and their bioconversion to xylitol. Food Biotechnol 14:79–97

    Article  CAS  Google Scholar 

  • Dehnavi GZ (2009) Fractionation of the main components of barley spent grains from a microbrewery. University of Borås, Sweden, Dissertation

    Google Scholar 

  • Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crops Prod 29:404–411

    Article  CAS  Google Scholar 

  • Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276

    Article  CAS  Google Scholar 

  • Duarte LC, Carvalheiro F, Lopes S (2008) Yeast biomass production in brewery’s spent grains hemicellulosic hydrolyzate. Appl Biochem Biotechnol 148:119–129

    Article  PubMed  CAS  Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (eds) (2009) Pulp and paper chemistry and technology, wood chemistry and wood biotechnology. De Gruyter, Berlin, pp 1–320

    Google Scholar 

  • Faith WL (1945) Development of the Scholler process in the United States. Ind Eng Chem 37:9–11

    Article  CAS  Google Scholar 

  • Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997) Environmental parameters affecting xylitol production from sugarcane bagasse hemicellulosic hydrolisate by Candida guilliermondii. J Ind Microbiol 18:251–254

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1984) Wood—chemistry, ultrastructure, reactions. Walterde Gruyter, Berlin

    Google Scholar 

  • Gajula CS, Konakalla R, Chandel AK, Kumari TDS, Rudravaram R, Mangamoori ML (2010) Bioconversion of groundnut shell hemicellulose hydrolysate into fuel ethanol production by Pichia stipitis NCIM 3498. Technol Spec 4:31–36

    Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Biores Technol 101:4775–4800

    Article  Google Scholar 

  • Grohmann K, Torget RW, Himmel M (1986) Dilute acid pretreatment of biomass at high solids concentrations. Biotechnol Bioeng Symp 17:135–151

    CAS  Google Scholar 

  • Guo Y, Yan Q, Jiang Z, Teng C, Wang X (2010) Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. J Ind Microbiol Biotechnol 37:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Herrera A, Téllez-Luis S J, Ramírez JA, Vázquez M (2003) Production of xylose from Sorghum straw using hydrochloric acid. J Cereal Sci 37:267–274

    Google Scholar 

  • Howard RL, Abotsi E, Van Rensburg ELJ, Howard S (2003) Lignocellulose biotechnology: Issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–609

    CAS  Google Scholar 

  • Kapdan IK, Kargi F, Oztekin R (2011) Effects of operating parameters on acid hydrolysis of ground wheat starch: Maximization of the sugar yield by statistical experiment design. Starch - Stärke 63:311–318

    Article  CAS  Google Scholar 

  • Kim SB, Lee JH, Oh KK, Lee SJ, Lee JY, Kim JS, Kim SW (2011) Diluted acid pretreatment of barley straw and its saccharification and fermentation. Biotechnol Bioproc Eng 16:725–732

    Article  CAS  Google Scholar 

  • Kirimura K, Watanabe T, Sunagawa T (1999) Citric acid production from xylan and xylan hudrolysate by semi-solid culture of Arpergilus niger. Biosci Biotechnol Biochem 63:226–228

    Article  PubMed  CAS  Google Scholar 

  • Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon (2010) Acid hydrolysis of sugarcane bagasse for lactic acid production. Biores Technol 101:1036–1043

    Google Scholar 

  • Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:93–115

    CAS  Google Scholar 

  • Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Mangwandi C, Walker GM (2011) Kinetic modelling of dilute acid hydrolysis of lignocellulosic biomass. In: Bernardes MAS (ed) Biofuel production-recent developments and prospects. InTech, Rijeka

    Google Scholar 

  • Li WZ, Xu J, Yan YJ, Zhu XF, Chen MQ, Tan ZC (2008) Studies of monosaccharide production through lignocellulosic waste hydrolysis using double acids. Energy Fuels 22(3):2015–2021

    Article  CAS  Google Scholar 

  • Mantanis G, Nakos P, Berns J, Rigal L (2000) Turning agricultural straw residues into value-added composite products: a new environmentally friendly technology. Proceedings of the 5th international conference on environmental pollution, pp 840–848, Aristotelian University, Thessaloniki, Greece

    Google Scholar 

  • Martín C, Puls J, Saake B, Schreiber A (2011) Effect of glycerol preatreatment on component recovery and enzymatic hydrolysis of sugarcane bagasse. Cellul Chem Technol 45:487–494

    Google Scholar 

  • Mcmillan JD (1992) NREL Report TP-421–4978. Golden, CO, USA

    Google Scholar 

  • Megawati Sediawan WB, Sulistyo H, Hidayat M (2011) Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: Effect of catalyst concentration. Biores Technol 102:2062–2067

    Article  CAS  Google Scholar 

  • Milessi TSS, Chandel AK, Branco RF, Silva SS (2011) Effect of dissolved oxygen and inoculum concentration on xylose reductase production from Candida guilliermondii using sugarcane bagasse hemicellulosic hydrolysate. Food Nut Sci 2:235–240

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee Y–Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686

    Article  CAS  Google Scholar 

  • Mouta RO, Chandel AK, Rodrigues RCLB, Silva MB, Rocha GJM, Silva SS (2011) Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Tech. doi:10.1007/s12355-011-0116-y

    Google Scholar 

  • Mussatto SI, Roberto IC (2005) Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J Sci Food Agr 85:2453–2460

    Article  CAS  Google Scholar 

  • Mussatto SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Research Center, Badajoz, Spain, pp 897–907

    Google Scholar 

  • Mussatto SI, Fernandes M, Roberto IC (2007) Lignin recovery from brewer’s spent grain black liquor. Carbohyd Polym 70:218–223

    Article  CAS  Google Scholar 

  • Mussatto SI, Carneiro LM, Silva JPA, Roberto IC, Teixeira JA (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohyd Polym 83:368–374

    Article  CAS  Google Scholar 

  • Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58

    Article  PubMed  Google Scholar 

  • Nguyen Q, Tucker M, Keller F, Eddy F (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84:561–576

    Article  PubMed  Google Scholar 

  • Nigam JN (2000) Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein. World J Microbiol Biotechnol 16:367–372

    Article  CAS  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicelluloses hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    Article  PubMed  CAS  Google Scholar 

  • Ou MS, Ingram LO, Shanmugam KT (2011) L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J Ind Microbiol Biotechnol 38:599–605

    Article  PubMed  CAS  Google Scholar 

  • Rabelo SC, Carrere H, Maciel filho R, Costa AC (2011) Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Biores Technol 102:7887–7895

    Article  CAS  Google Scholar 

  • Rahman SHA, Choudhury JP, Ahmad AL (2006) Production of xylose from oil palm empty fruit bunch fiber using sulfuric acid. Biochem Eng J 30:97–103

    Article  CAS  Google Scholar 

  • Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176

    Article  CAS  Google Scholar 

  • Rocha GJM, Martin M, Soares IB, Maior AMS, Baudel HM, Abreus CAM (2011) Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass Bioener 35:663–670

    Article  Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2012) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crops Prod 35:274–279

    Article  CAS  Google Scholar 

  • Rodrigues RCLB, RochaGJM, Rodrigues Jr D, Filho HJI, Felipe MGA, Pessoa Jr A (2010) Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Biores Technol 101:1247–1253

    Google Scholar 

  • Rodrigues RC, Kenealy WR, Jeffries TW (2011) Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol 38:1649–1655

    Article  PubMed  CAS  Google Scholar 

  • Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 35–74

    Google Scholar 

  • Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb Technol 42:160–166

    Article  PubMed  CAS  Google Scholar 

  • Saeman JF (1945) Kinetics of wood saccharification. Ind Eng Chem 37:43–52

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Sanchez G, Pilcher L, Roslander C, Modig T, Galbe M, Liden G (2004) Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja brava. Biores Technol 93:249–256

    Article  CAS  Google Scholar 

  • Sepúlveda-Huerta E, Tellez-Luis SJ, Bocanegra-García V, Ramírez JA, Vázquez M (2006) Production of detoxified sorghum straw hydrolysates for fermentative purposes. J Sci Food Agr 86:2579–2586

    Article  Google Scholar 

  • Shatalov AA, Pereira H (2012) Xylose production from giant reed (Arundo donax L.): modeling and optimization of dilute acid hydrolysis. Carbohyd Polym 87:210–217

    Article  CAS  Google Scholar 

  • Silva SS, Musstto SI, Santos JC, Santos DT, Polizel J (2007) Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl Biocehm Biotechnol 141:215–227

    Google Scholar 

  • Silva AS, Inoue H, Endo T, Yano S, Bon EPS (2010a) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Biores Technol 101:7402–7409

    Article  Google Scholar 

  • Silva SS, Mussatto SI, Santos JC, Santos DT, Polizel J (2010b) Cell immobilization and xylitol production using sugarcane bagasse as raw material. Appl Biochem Biotechnol 141:215–228

    Article  Google Scholar 

  • Silva VFN, Arruda PV, Felipe MGA, Gonçalves AR, Rocha GJM (2010c) Fermentation of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing. J Ind Microbiol Biotechnol 38:809–817

    Article  PubMed  Google Scholar 

  • Sjöström E (1993) Wood polysaccharides. In: Sjöström E (ed) Wood chemistry: Fundamentals and applications, 2nd edn. Academic Press, New York, pp 54–70

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid based hydrolysis process for bioethanol production from lignocellulosic materials: a review. BioRes 2:472–499

    CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  PubMed  CAS  Google Scholar 

  • Tamanini C, Oliveira AS, Felipe MGA, Canettieri EV, Cândido EJ, Hauly MCO (2004) Avaliação da casca de aveia para a produção biotecnológica de xilitol. Acta Sci Technol 26:117–125

    CAS  Google Scholar 

  • Téllez-Luis SJ, Ramírez JA, Vázquez M (2002) Mathematical modelling of hemicellulosic sugar production from Sorghum straw. J Food Eng 52:285–291

    Article  Google Scholar 

  • Viikari L (2004) Overcoming technical barriers in bioethanol production from lignocellulosics. European-China workshop on liquid biofuels; 4–5 Novemb, Beijing

    Google Scholar 

  • Xiang Q, Kim JS, Lee YY (2003) A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 105–108:337–352

    Article  PubMed  Google Scholar 

  • Xie G, West T (2009) Citric acid production by Aspergillus niger ATCC 9142 from a treated ethanol fermentation co-product using solid-state fermentation. Lett Appl Microbiol 48:639–644

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low cost cellulosic ethanol. Biofuels Biopr Bioref 2:26–40

    Article  CAS  Google Scholar 

  • Zhang D, Ong YL, Li Z, Wua JC (2012) Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chem Eng J 181–182:636–642

    Article  Google Scholar 

  • Zhao X, Song Y, Liu D (2011) Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2, 3–butanediol production. Enzyme Microb Technol 49:413–419

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the BIOEN/FAPESP, CNPq and CAPES, Brazil for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anuj K. Chandel or Maria das Graças de Almeida Felipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandel, A.K., Antunes, F.A.F., de Arruda, P.V., Milessi, T.S.S., da Silva, S.S., de Almeida Felipe, M.d.G. (2012). Dilute Acid Hydrolysis of Agro-Residues for the Depolymerization of Hemicellulose: State-of-the-Art. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_2

Download citation

Publish with us

Policies and ethics