Skip to main content

Community Structure: An Introduction

  • Chapter

Part of the book series: Springer Theses ((Springer Theses))

Abstract

As a salient and important structural characteristic of real world networks, community structure is increasingly attracting much research attention from various fields. In this chapter, we will briefly introduce the research progress about the detection of community structure in networks. These include community definition, community detection methods, community evolution, measurements for evaluation, and test datasets used in this monograph. We also describe the unresolved problems which deserves much more efforts in the future. This chapter can serve as a brief survey for beginners to the study of community structure in networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MATH  Google Scholar 

  3. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Euler, L.: Solutio problematis ad geometrian situs pertinentis. Comment. Acad. Sci. Petropolitanae 8, 128–140 (1736)

    Google Scholar 

  5. Bollobas, B.: Modern Graph Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  6. Erdős, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  7. Mendes, J.F.F., Dorogovtsev, S.N.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  8. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  9. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  10. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  11. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  12. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  13. Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web, pp. 631–640 (2010)

    Chapter  Google Scholar 

  14. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freeman, L.C.: The Development of Social Network Analysis: A Study in the Sociology of Science. BookSurge Publishing, North Charleston (2004)

    Google Scholar 

  17. Flake, G.W., Lawrence, S.R., Giles, C.L., Coetzee, F.M.: Self-organization and identification of Web communities. IEEE Comput. 35, 66–71 (2002)

    Article  Google Scholar 

  18. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA 100, 1128–1133 (2003)

    Article  Google Scholar 

  19. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein interaction network. Bioinformatics 22, 2283–2290 (2006)

    Article  Google Scholar 

  20. Guimerà, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)

    Article  Google Scholar 

  21. Williams, R.J., Martinez, N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000)

    Article  Google Scholar 

  22. Krawczyk, M.J.: Differential equations as a tool for community identification. Phys. Rev. E 77, 065701 (2008)

    Article  Google Scholar 

  23. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  24. Alba, R.D.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3, 113–126 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mokken, R.J.: Cliques, clubs and clans. Qual. Quant. 13, 161–173 (1979)

    Article  Google Scholar 

  26. Seidman, S.B., Foster, B.L.: A graph theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5, 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  28. Matsuda, H., Ishihara, T., Hashimoto, A.: Classifying molecular sequences using a linkage graph with their pairwise similarities. Theoret. Comput. Sci. 210, 305–325 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101, 2658–2663 (2004)

    Article  Google Scholar 

  30. Borgatti, S.P., Everett, M.G., Shirey, P.: LS sets, lambda sets and other cohesive subsets. Soc. Netw. 12, 337–357 (1990)

    Article  MathSciNet  Google Scholar 

  31. Hu, Y., Chen, H., Zhang, P., Li, M., Di, Z., Fan, Y.: Comparative definition of community and corresponding identifying algorithm. Phys. Rev. E 78, 026121 (2008)

    Article  Google Scholar 

  32. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  33. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett. 93, 218701 (2004)

    Article  Google Scholar 

  34. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123 (2008)

    Article  Google Scholar 

  35. Newman, M.E.J., Leicht, E.A.: Mixture models and exploratory analysis in networks. Proc. Natl. Acad. Sci. USA 104, 9564–9569 (2007)

    Article  MATH  Google Scholar 

  36. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)

    MATH  Google Scholar 

  37. Wei, Y.C., Cheng, C.K.: Toward efficient hierarchical designs by ratio cut partitioning. In: Proceedings of IEEE International Conference on Computer Aided Design, pp. 298–301 (1989)

    Google Scholar 

  38. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  39. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning. Springer, Berlin (2001)

    MATH  Google Scholar 

  40. Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures based on information centrality. Phys. Rev. E 70, 056104 (2004)

    Article  Google Scholar 

  41. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

  42. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  43. Leicht, E.A., Newman, M.E.J.: Community structure in directed networks. Phys. Rev. Lett. 100, 118703 (2008)

    Article  Google Scholar 

  44. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite and directed networks. Phys. Rev. E 76, 036102 (2007)

    Article  Google Scholar 

  45. Barber, M.J.: Modularity and community detection in bipartite networks. Phys. Rev. E 76, 066102 (2007)

    Article  MathSciNet  Google Scholar 

  46. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876–878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188 (2008)

    Article  Google Scholar 

  48. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. P10008 (2008)

    Google Scholar 

  49. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72, 027104 (2005)

    Article  Google Scholar 

  50. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006)

    Article  Google Scholar 

  51. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)

    Article  MathSciNet  Google Scholar 

  52. Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms (2007). arXiv:0711.0491

  53. Agarwal, G., Kempe, D.: Modularity-maximizing graph communities via mathematical programming. Eur. Phys. J. B 66, 409–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New J. Phys. 10, 053039 (2008)

    Article  Google Scholar 

  55. Schuetz, P., Caflisch, A.: Multistep greedy algorithm identifies community structure in real-world and computer-generated networks. Phys. Rev. E 78, 026112 (2008)

    Article  Google Scholar 

  56. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 025101 (2004)

    Article  Google Scholar 

  57. Sales-Pardo, M., Guimerà, R., Moreira, A.A., Amaral, L.A.N.: Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. USA 104, 15224–15229 (2007)

    Article  Google Scholar 

  58. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)

    Article  Google Scholar 

  59. Ronhovde, P., Nussinov, Z.: Multiresolution community detection for megascale networks by information-based replica correlations. Phys. Rev. E 80, 016109 (2009)

    Article  Google Scholar 

  60. Shen, H.W., Cheng, X.Q., Fang, B.X.: Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E 82, 016114 (2010)

    Article  Google Scholar 

  61. Good, B.H., Montjoye, Y., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106 (2010)

    Article  MathSciNet  Google Scholar 

  62. Arenas, A., Díaz-Guilera, A., Pérez-Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

    Article  Google Scholar 

  63. Cheng, X.Q., Shen, H.W.: Uncovering the community structure associated with the diffusion dynamics on networks. J. Stat. Mech. P04024 (2010)

    Google Scholar 

  64. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 104, 7327–7331 (2007)

    Article  Google Scholar 

  65. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)

    Article  Google Scholar 

  66. Kumpula, J.M., Kivelä, M., Kaski, K., Saramäki, J.: Sequential algorithm for fast clique percolation. Phys. Rev. E 78, 026109 (2008)

    Article  Google Scholar 

  67. Farkas, I.J., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New J. Phys. 9, 180 (2007)

    Article  Google Scholar 

  68. Palla, G., Farkas, I.J., Pollner, P., Derényi, I., Vicsek, T.: Directed network modules. New J. Phys. 9, 186 (2007)

    Article  Google Scholar 

  69. Lehmann, S., Schwartz, M., Hansen, L.K.: Biclique communities. Phys. Rev. E 78, 016108 (2008)

    Article  MathSciNet  Google Scholar 

  70. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the overlapping and hierarchical community structure of complex networks. New J. Phys. 11, 033015 (2009)

    Article  Google Scholar 

  71. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping communities. Lect. Notes Comput. Sci. 3495, 27–36 (2005)

    Article  Google Scholar 

  72. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community structure by greedy clique expansion. In: Proceedings of the 4th SNA-KDD Workshop (2010)

    Google Scholar 

  73. Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018 (2010)

    Article  Google Scholar 

  74. Gregory, S.: An algorithm to find overlapping community structure in networks. In: Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 91–102 (2007)

    Google Scholar 

  75. Evans, T.S., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys. Rev. E 80, 016105 (2009)

    Article  Google Scholar 

  76. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466, 761–764 (2010)

    Article  Google Scholar 

  77. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008)

    MATH  Google Scholar 

  78. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011)

    Article  MathSciNet  Google Scholar 

  79. Eorsheva, E., Fienberg, S., Lafferty, J.: Mixed-membership models of scientific publications. Proc. Natl. Acad. Sci. USA 101, 5220–5227 (2004)

    Article  Google Scholar 

  80. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proc. Natl. Acad. Sci. USA 101, 5249–5253 (2004)

    Article  Google Scholar 

  81. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  Google Scholar 

  82. Lin, Y.R., Chi, Y., Zhu, S.H., Sundaram, H., Tseng, B.L.: FacetNet: A framework for analyzing communities and their evolutions in dynamic networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 685–694 (2008)

    Chapter  Google Scholar 

  83. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008)

    Article  Google Scholar 

  84. Condon, A., Karp, R.M.: Algorithms for graph partitioning on the planted partition model. Random Struct. Algorithms 18, 116–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  85. Fan, Y., Li, M., Zhang, P., Wu, J., Di, Z.: Accuracy and precision of methods for community identification in weighted networks. Physica A 377, 363–372 (2007)

    Article  Google Scholar 

  86. Sawardecker, E.N., Sales-Pardo, M., Amaral, L.A.N.: Detection of node group membership in networks with group overlap. Eur. Phys. J. B 67, 277–284 (2009)

    Article  Google Scholar 

  87. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80, 016118 (2009)

    Article  Google Scholar 

  88. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Google Scholar 

  89. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Can geographic isolation explain this unique trait? Behav. Ecol. Sociobiol. 54, 396–405 (2003)

    Article  Google Scholar 

  90. Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community structure identification. J. Stat. Mech. P09008 (2005)

    Google Scholar 

  91. Meilă, M.: Comparing clusterings: An information based distance. J. Multivar. Anal. 98, 873–895 (2007)

    Article  MATH  Google Scholar 

  92. Karrer, B., Levina, E., Newman, M.E.J.: Robustness of community structure in networks. Phys. Rev. E 77, 046119 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shen, HW. (2013). Community Structure: An Introduction. In: Community Structure of Complex Networks. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31821-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31821-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31820-7

  • Online ISBN: 978-3-642-31821-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics