Skip to main content

Physical Chemistry: Extending the Boundaries

  • Chapter
  • First Online:

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

This chapter is conceived as a brief exposition of the content of the previous nine chapters, a commentary on them and added material, with the intent to enlarge reflection on the general theme, Physical Chemistry in Action. It can be considered as a guide to the book and, in its attempt to be syncretic, perhaps as a guide to the perplexed, confronted with the separate domains of physical chemistry, astrochemistry and astrobiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Did Shakespeare have only one Dark Lady in his sonnet sequence [7]? Cosmology has certainly two Dark Ladies (Dark Matter, Dark Energy) whose identity is sought.

  2. 2.

    LOFAR, recently built in Holland, is a new radio interferometric array consisting of many low-cost antennae, organised in stations arranged in an area of 100 km diameter as well as several international stations and operating between 10 and 250 MHz.

References

  1. Shiltsev V (2012) Mikhail Lomonosov and the dawn of Russian science. Phys Today 64:40–46

    Google Scholar 

  2. Perrin J (1903) Traité de Chimie Physique I: Les Principes. Gauthier-Villars, Paris

    Google Scholar 

  3. Hinshelwood C (1951) The structure of physical chemistry. Clarendon, Oxford

    Google Scholar 

  4. Bartels H-G, Huebener R (2007) Walther Nernst: pioneer of physics and chemistry. World Scientific, Singapore

    Google Scholar 

  5. Wilcek F (1999) The persistence of ether. Phys Today 52:11–13

    Google Scholar 

  6. Kragh H (2012) Walther Nernst: grandfather of dark energy. Astron Geophys 53:1.24–1.26

    Google Scholar 

  7. Shakespeare W (2002) Sonnets and poems. Oxford University Press, Oxford

    Google Scholar 

  8. Layzer D (1993) Chemistry and cosmology. J Phys Chem 97:2395–2399

    CAS  Google Scholar 

  9. Canuto V (1978) On the origin of Hawking mini black-holes and the cold early universe. Mon Not R Astron Soc 184:721–725

    CAS  Google Scholar 

  10. Aguirre AN (1999) Cold big bang nucleogenesis. Astrophys J 521:17–29; (2000) The cosmic background radiation in a cold big bang. Astrophys J 533:1–18

    Google Scholar 

  11. Khoury J, Ovrut BA, Steinhardt PJ, Turok N (2001) Ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys Rev D 64:123522–123523

    Google Scholar 

  12. Martin J, Peter P (2004) On the “causality argument” in bouncing cosmologies. Phys Rev Lett 92:061301–061304

    Google Scholar 

  13. Sagan C, Chyba C (1997) The faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221

    CAS  Google Scholar 

  14. Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys J 622:680–694

    CAS  Google Scholar 

  15. O’Malley-James JT, Raven JA, Cockell CS, Greaves JS (2012) Life and light: exotic photosynthesis in binary and multiple-star systems. Astrobiology 12:115–124

    Google Scholar 

  16. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    CAS  Google Scholar 

  17. Mulkidjanian AY, Galperin MY (2007) Physicochemical and evolutionary constraints for the formation and selection of first biopolymers: towards the concensus paradigm of the abiogenic origin of life. Chem Divers 4:2003–2015

    CAS  Google Scholar 

  18. Luminet J-P (2011) Black holes. Cambridge Univesity Press, Cambridge

    Google Scholar 

  19. Fumagalli M, O’Meara JM, Prochaska JX (2011) Detection of pristine gas two billion years after the big bang. Science 334:1245–1249

    CAS  Google Scholar 

  20. Leach S (2012) Why COBE and CN spectroscopy cosmic background radiation temperature measurements differ, and a remedy. Mon Not R Astron Soc 421:1325–1330

    CAS  Google Scholar 

  21. Indriolo N, McCall BJ (2012) Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observation of H +3 . Astrophys J 745:91-1-17

    Google Scholar 

  22. Snow TP, Witt AN (1996) Interstellar depletions updated: where all the atoms went. Astrophys J Lett 468:L65–L68

    CAS  Google Scholar 

  23. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    CAS  Google Scholar 

  24. Lodders K (2010) Solar system abundances of the elements. In: Goswami A, Reddy BE (eds) Principles and perspectives in cosmochemistry, Astrophysics and space science proceedings. Springer, New York, pp 379–417

    Google Scholar 

  25. Ney EP, Hatfield BF (1978) The isothermal dust condensation of Nova Vulpeculae 1976. Astrophys J Lett 219:L111–L115

    Google Scholar 

  26. Duley WW (1980) Redox reactions and the optical properties of interstellar grains. Astrophys J 240:950–955

    CAS  Google Scholar 

  27. Field D (2000) H2 formation in space: a negative ion route ? Astron Astrophys 362:774–779

    CAS  Google Scholar 

  28. Caruana DJ, Holt KB (2010) Astroelectrochemistry: the role of redox reactions in cosmic dust chemistry. Phys Chem Chem Phys 12:3072–3079

    CAS  Google Scholar 

  29. Hoyle F, Wickramasinghe NC (1979) On the nature of interstellar grains. Astrophys Space Sci 66:77–90

    CAS  Google Scholar 

  30. Hoyle F, Wickramasinghe NC, Al-Mufti S (1985) The ultraviolet absorbance of presumably interstellar bacteria and related matters. Astrophys Space Sci 111:65–78

    CAS  Google Scholar 

  31. Léger A, d’Hendecourt L, Boccara N (eds) (1987) Polycyclic aromatic hydrocarbons and astrophysics. Reidel, Dordrecht

    Google Scholar 

  32. Kwok S, Zhang Y (2011) Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified emission features. Nature 479:80–83

    Google Scholar 

  33. Cami J, Bernard-Salas J, Peeters E, Malek SE (2010) Detection of C60 and C70 in a young planetary nebula. Science 329:1180–1182

    CAS  Google Scholar 

  34. Zhang Y, Kwok S (2011) Detection of C60 in the protoplanetary nebula IRAS 01005+7910. Astrophys J 730:126-1-5

    Google Scholar 

  35. Herbig GH (2000) The search for interstellar C60. Astrophys J 542:334–343

    CAS  Google Scholar 

  36. Leach S, Vervloet M, Desprès A, Bréhéret E, Hare JP, Dennis TJ, Kroto HW, Taylor R, Walton DRM (1992) Electronic spectra and transitions of the fullerene C60. Chem Phys 160:451–466

    CAS  Google Scholar 

  37. Sassara A, Zerza G, Chergui M, Leach S (2001) Absorption wavelengths and bandwidths for interstellar searches of C60 in the 2400–4100 Å region. Astrophys J Suppl 135:263–273

    CAS  Google Scholar 

  38. Goeres A, Sedlmayr E (1992) The envelopes of R Coronae Borealis stars I. A physical model of the decline events due to dust formation. Astron Astrophys 265:216–236

    Google Scholar 

  39. García-Hernández DA, Iglesias-Groth S, Acosta-Pulido A, Manchado A, García-Lario P, Stanghellini L, Villaver E, Shaw RA, Cataldo F (2011) The formation of fullerenes: clues from new C60, C70, and (possible) planar C24 detections in the Magellanic cloud planetary nebulae. Astrophys J Lett 737:L30-1-7

    Google Scholar 

  40. Duley WW, Hu A (2012) Fullerenes and proto-fullerenes in interstellar carbon dust. Astrophys J Lett 745:L11-1-4

    Google Scholar 

  41. Evans A, van Loon JT, Woodward CE, Gehrz RD, Clayton GC, Helton LA, Rushton MT, Eyres SPS, Krautter J, Starrfield S, Wagner RM (2012) Solid-phase C60 in the peculiar binary XX Oph? Mon Not R Astron Soc 421:L92–L96

    CAS  Google Scholar 

  42. Tong X, Winney AH, Willitsch S (2010) Sympathetic cooling of molecular ions in selected rotational and vibrational states produced by threshold photoionization. Phys Rev Lett 105:143001-1-4

    Google Scholar 

  43. Hall FJ, Aymar M, Bouloufa-Maafa N, Dulieu O, Wilitsch S (2011) Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation versus charge exchange. Phys Rev Lett 107:243202-1-5

    Google Scholar 

  44. Goulielmakis E, Loh Z-H, Wirth A, Santra R, Rohringer N et al (2010) Real-time observation of valence electron motion. Nature 466:739–743

    CAS  Google Scholar 

  45. Grubb M, Warter ML, Xiao H, Maeda S, Morokuma K, North SW (2012) No straight path: roaming in both ground- and excited-state photolytic channels of NO3 — > NO + O2. Science 335:1075–1078

    CAS  Google Scholar 

  46. Bowman JM, Schneider BC (2011) Roaming radicals. Annu Rev Phys Chem 62:531–553

    CAS  Google Scholar 

  47. NIST Chemistry Webbook (June 2005) National Institute of Standards and Technology Reference Database. Available from http://webbook.nist.gov (current 2010)

  48. Lias SG, Bartmess JE, Libman JF, Holmes JL, Levin RD, Mallard WG (1988) Gas-phase ion and neutral thermochemistry. J Phys Chem Ref Data 17(supplNo.1)

    Google Scholar 

  49. Cohen N, Benson SW (1983) Estimation of heats of formation of organic compounds by additivity methods. Chem Rev 93:2419–2438

    Google Scholar 

  50. Lemoult P (1907) Recherches théoriques et expérimentales sur les chaleurs de combustion et de formation des composés organiques. 1. Amines primaires, secondaires et tertiaires. Ann Chim Phys 8e série:395–432

    Google Scholar 

  51. Lemoult P (1908) Recherches théoriques et expérimentales sur les chaleurs de combustion et de formation des composés organiques. 2. Composés hydrazoiques. Ann Chim Phys 8e série:562–574

    Google Scholar 

  52. Lemoult P (1905) Relations générales entre la chaleur de combustion des composés organiques et leur formule de constitution. Calcul des chaleurs de combustion. Ann Chim Phys 8e série: 5–70

    Google Scholar 

  53. Cox JD, Pilcher G (1970) Thermochemistry of organic and organometallic compounds. Academic, New York

    Google Scholar 

  54. Benson SW, Buss JH (1958) Additivity rules for the estimation of Molecular properties. Thermodynamic properties. J Chem Phys 29:546–573

    CAS  Google Scholar 

  55. Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New York

    Google Scholar 

  56. Pedley JB, Naylor RD, Kirby SP (1986) Thermochemical data of organic compounds, 2nd edn. Chapman and Hall, London

    Google Scholar 

  57. van Speybroek V, Gani R, Meier RJ (2010) The calculation of thermodynamic properties of molecules. Chem Soc Rev 39:1764–1779

    Google Scholar 

  58. Holmes JL, Lossing FP (1989) Bond strengths in even-electron ions and the proton affinities of free radicals. Int J Mass Spectrom Ion Processes 92:111–122

    CAS  Google Scholar 

  59. Meot-Ner Mautner M, Sieck LW (1991) Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range. J Am Chem Soc 113:4448–4460

    Google Scholar 

  60. Czakó G, Mátyus E, Simmonnett AG, Császár G, Schaefer HF III, Allen WD (2008) Anchoring the absolute proton affinity scale. J Chem Theory Comput 4:1220–1229

    Google Scholar 

  61. Lias SG, Bartmess JE (2005) Gas-phase ion thermochemistry. NIST Chemistry Webbook, http://webbook.nist.gov

  62. Traeger JC, McLoughlin RG (1981) Absolute heats of formation for gas-phase cations. J Am Chem Soc 103:3637–3652

    Google Scholar 

  63. Franklin JL (1953) Calculation of the heats of formation of gaseous free radicals and ions. J Chem Phys 21:2029–2034

    CAS  Google Scholar 

  64. Holmes JL, Fingas M, Lossing FP (1981) Towards a general scheme for estimating the heats of formation of organic ions in the gas phase. Part 1. Odd-electron ions. Can J Chem 59:80–93

    CAS  Google Scholar 

  65. Vasyunin AI, Semenov D, Henning Th, Wakelam V, Herbst E, Sobolev AM (2008) Chemistry in protoplanetary disks: a sensitivity analysis. Astrophys J 672:629–641

    CAS  Google Scholar 

  66. Patra SM, Mishra RK, Mishra BK (1997) Graph-theoretic study of certain interstellar reactions. Int J Quantum Chem 62:495–508

    CAS  Google Scholar 

  67. Solé RV, Munteanu A (2004) The large-scale organization of chemical networks in astrophysics. Europhys Lett 68:170–176

    Google Scholar 

  68. Jolley C, Douglas T (2012) Topological signatures: large-scale structure of chemical networks from biology and astrochemistry. Astrobiology 12:29–39

    CAS  Google Scholar 

  69. Wayne RP (2000) Chemistry of atmospheres. An introduction to the chemistry of the atmospheres of earth, the planets, and their satellites, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  70. Taylor FW (2010) Planetary atmospheres. Oxford University Press, Oxford

    Google Scholar 

  71. Pierrehumbert RT (2010) Principles of planetary climate. Cambridge University Press, Cambridge

    Google Scholar 

  72. Lellouch E (2011) The composition of planetary atmospheres: an historical perspective. In: Beaulieu J-P, Dieters S, Tinetti G (eds) Molecules in the atmospheres of extrasolar planets, ASP conference series, Paris, vol 450, pp 3–18

    Google Scholar 

  73. Perryman MAC (2000) Extra-solar planets. Rep Prog Phys 63:1209–1272

    CAS  Google Scholar 

  74. Sozzetti MT, Lattanzi MG, Boss AP (eds) (2011) The astrophysics of planetary systems: formation, structure, and dynamical evolution. Proceedings IAU symposium, 276 Torino

    Google Scholar 

  75. Schneider J, Dedieu C, Le Sidaner P, Savalle R, Zolotukhin I (2011) Defining and cataloging exoplanets: the exoplanet.eu data base. Astron Astrophys 532:A79-1-13

    Google Scholar 

  76. Plavalova E (2012) Taxonomy of the extrasolar planet. Astrobiology 12:361–369

    Google Scholar 

  77. Seager S (2010) Exoplanet atmospheres: a theoretical outlook. In: Sozzetti MT, Lattanzi MG, Boss AP (eds) The astrophysics of planetary systems: formation, structure, and dynamical evolution. Proceedings IAU symposium. Torino, 276, pp 198–207

    Google Scholar 

  78. Seager S, Deming D (2010) Exoplanet atmospheres. Annu Rev Astron Astrophys 48:631–672

    CAS  Google Scholar 

  79. Burrows A, Budaj J, Hubeny I (2008) Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. Astrophys J 678:1436–1457

    CAS  Google Scholar 

  80. Liang M-C, Seager S, Parkinson C, Lee AY-L, Yung YL (2004) On the insignificance of photochemical hydrocarbon aerosols in the atmospheres of close-in extrasolar giant planets. Astrophys J Lett 605:L61–L64

    CAS  Google Scholar 

  81. Line MR, Vasisht G, Chen P, Angerhausen D, Yung YL (2011) Thermochemical and photochemical kinetics in cooler hydrogen-dominated extrasolar planets: a methane-poor GJ4336b? Astrophys J 738:32-1-14

    Google Scholar 

  82. Miller-Ricci Kempton E, Zahnle K, Fortney JJ (2012) The atmospheric chemistry of GJ 1214b: photochemistry and clouds. Astrophys J 745:3-1-13

    Google Scholar 

  83. Marley MS, Fortney J, Seager S, Barman T (2007) Atmospheres of extrasolar giant planets. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 733–747

    Google Scholar 

  84. Seager S, Schrenk M, Bains W (2012) An astrophysical view of earth-based metabolic biosignature gases. Astrobiology 12:61–82

    CAS  Google Scholar 

  85. Fox JL, Galand MI, Johnson RE (2008) Energy deposition in planetary atmospheres by charged particles and solar photons. Space Sci Rev 139:3–62

    CAS  Google Scholar 

  86. Yelle R, Lammer H, Ip W-H (2008) Aeronomy of extra-solar giant planets. Space Sci Rev 139:437–451

    Google Scholar 

  87. Lunine JI (2005) Astrobiology: a multidisciplinary approach. Addison Wesley, San Francisco

    Google Scholar 

  88. Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosystems 8:Q06014-1-22

    Google Scholar 

  89. Hirschmann M, Kohlstedt D (2012) Water in Earth’s mantle. Phys Today 65:40–45

    CAS  Google Scholar 

  90. Léger A, Selsis F, Sotin C, Guillot T, Despois D et al (2004) A new family of planets? “Ocean Planets”. Icarus 169:499–504

    Google Scholar 

  91. Marcy G (2009) Water world larger than Earth. Nature 462:853–854

    CAS  Google Scholar 

  92. de Grotthuss CJT (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim (Paris) 58:54–74

    Google Scholar 

  93. Cuikerman S (2006) Et tu, Grotthuss! and other unfinished stories. Biochim Biophys Acta 1757:876–885

    Google Scholar 

  94. Fayer MD (2012) Dynamics of water interacting with interfaces, molecules, and ions. Acc Chem Res 45:3–14

    CAS  Google Scholar 

  95. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    CAS  Google Scholar 

  96. Benner S, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672–689

    CAS  Google Scholar 

  97. Cleland CE, Chyba CF (2002) Defining ‘life’. Origins Life Evol B 32:387–393

    CAS  Google Scholar 

  98. Ruiz-Mirazo K, Pereto J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Origins Life Evol B 34:323–346

    CAS  Google Scholar 

  99. Deamer D (2010) Special collection of essays: what is life? Astrobiology 10:1001–1002

    Google Scholar 

  100. Lambert JB, Gurusamy-Thangavelu SA, Ma K (2010) The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates. Science 327:984–986

    CAS  Google Scholar 

  101. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance and survival. Proc Natl Acad Sci 101:4631–4636

    CAS  Google Scholar 

  102. Morowitz HJ (1992) Beginnings of cellular life: metabolism recapitulates biogenesis. Yale University Press, New Haven/London

    Google Scholar 

  103. Pross A (2003) The driving force for life’s emergence. Kinetic and thermodynamic considerations. J Theor Biol 220:393–406

    Google Scholar 

  104. Pross A (2004) Causation and the origin of life. Metabolism or replication first? Origins Life Evol B 34:307–321

    CAS  Google Scholar 

  105. Anet FAL (2004) The place of metabolism in the origin of life. Curr Opin Chem Biol 8:654–659

    CAS  Google Scholar 

  106. Eschenmoser A (1994) Chemistry of potentially prebiological natural products. Origins Life Evol B 24:389–423

    CAS  Google Scholar 

  107. Altman S, Baer MF, Bartkiewicz M, Gold H, Guerrier-Takada C, Kirsebom LA, Lumelsky N, Peck K (1989) Catalyses by the RNA subunit of RNase P - a minireview. Gene 82:63–64

    CAS  Google Scholar 

  108. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    CAS  Google Scholar 

  109. Cech TR (1993) The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene 135:33–36

    CAS  Google Scholar 

  110. Powner MW, Gerland B, Sutherland J (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    CAS  Google Scholar 

  111. Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci 107:4585–4589

    CAS  Google Scholar 

  112. Szathmáry E (2006) The origin of replicators and reproducers. Philos Trans R Soc B 361:1761–1776

    Google Scholar 

  113. Eigen M (1971) Self-organization of matter and the evolution of biological molecules. Naturwissenschaften 58:465–523

    CAS  Google Scholar 

  114. Hancyzc MM, Szostak JW (2004) Replicating vesicles as models of primitive cell growth and division. Curr Opin Chem Biol 8:660–664

    Google Scholar 

  115. Stano P, Luisi PL (2010) Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem Commun 46:3639–3653

    CAS  Google Scholar 

  116. Čopič A, Latham CF, Horlbeck MA, D’Arcangelo JG, Miller EA (2012) ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science 335:1359–1362

    Google Scholar 

  117. Szostak JW (2011) An optimal degree of physical and chemical heterogeneity for the origin of life. Philos Trans R Soc B 366:2894–2901

    CAS  Google Scholar 

  118. Zykov V, Mytilinaios E, Adams B, Lipson H (2005) Self-reproducing machines. Nature 435:163–164

    CAS  Google Scholar 

  119. Solé RV (2009) Evolution and self-assembly of protocells. Int J Biochem Cell Biol 41:274–284

    Google Scholar 

  120. Nurse P (2008) Life, logic and information. Nature 454:424–426

    CAS  Google Scholar 

  121. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M et al (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sydney Leach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leach, S. (2013). Physical Chemistry: Extending the Boundaries. In: Smith, I., Cockell, C., Leach, S. (eds) Astrochemistry and Astrobiology. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31730-9_10

Download citation

Publish with us

Policies and ethics