Skip to main content

Epsilon-Net Method for Optimizations over Separable States

  • Conference paper
Automata, Languages, and Programming (ICALP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7391))

Included in the following conference series:

Abstract

We give algorithms for the optimization problem: \(\max_\rho \left\langle Q , \rho\right\rangle \), where Q is a Hermitian matrix, and the variable ρ is a bipartite separable quantum state. This problem lies at the heart of several problems in quantum computation and information, such as the complexity of QMA(2). While the problem is NP-hard, our algorithms are better than brute force for several instances of interest. In particular, they give PSPACE upper bounds on promise problems admitting a QMA(2) protocol in which the verifier performs only logarithmic number of elementary gate on both proofs, as well as the promise problem of deciding if a bipartite local Hamiltonian has large or small ground energy. For Q ≥ 0, our algorithm runs in time exponential in ||Q|| F . While the existence of such an algorithm was first proved recently by Brandão, Christandl and Yard [Proceedings of the 43rd annual ACM Symposium on Theory of Computation , 343–352, 2011], our algorithm is conceptually simpler.

A full version of this paper is available at arXiv:1112.0808. This research was supported in part by National Basic Research Program of China Awards 2011CBA00300 and 2011CBA00301, and by NSF of United States Award 1017335.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S., Beigi, S., Drucker, A., Fefferman, B., Shor, P.: The Power of Unentanglement. Theory of Computing 5, 1–42 (2009)

    Article  MathSciNet  Google Scholar 

  2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta algorithm and applications (2005)

    Google Scholar 

  3. Beigi, S.: NP vs QMAlog(2). Quantum Information and Computation 54(1&2), 0141–0151 (2010)

    Google Scholar 

  4. Borodin, A.: On relating time and space to size and depth. SIAM Journal on Computing 6(4), 733–744 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blier, H., Tapp, A.: All languages in NP have very short quantum proofs. In: Proceedings of the ICQNM, pp. 34–37 (2009)

    Google Scholar 

  6. Brandão, F., Christandl, M., Yard, J.: A quasipolynomial-time algorithm for the quantum separability problem. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computation (STOC 2011), p. 343 (2011)

    Google Scholar 

  7. Chen, J., Drucker, A.: Short multi-prover quantum proofs for SAT without entangled measurements. arXiv:1011.0716 (2010)

    Google Scholar 

  8. Defant, A., Floret, K.: Tensor norms and operator ideals. North Holland (1992)

    Google Scholar 

  9. Doherty, A., Parrilo, P., Spedalieri, F.: A complete family of separability criteria. Physical Review A 69, 022308 (2004)

    Article  Google Scholar 

  10. Fan, K.: Minimax theorems. Proceedings of the National Academy of Sciences 39, 42–47 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gathen, J.: Parallel linear algebra. In: Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  12. Gharibian, S.: Strong NP-hardness of the quantum separability problem. Quantum Information and Computation 10, 343 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer (1993)

    Google Scholar 

  14. Gurvits, L.: Classical complexity and quantum entanglement. Journal of Computer and System Sciences 69, 448 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutoski, G., Wu, X.: Parallel approximation of min-max problems with applications to classical and quantum zero-sum games. In: Proceedings of the 27rd Annual IEEE Conference on Computational Complexity (to appear, 2012)

    Google Scholar 

  16. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Review Modern Physics 81, 865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harrow, A., Montanaro, A.: An efficient test for product states, with applications to quantum Merlin-Arthur games. In: Proceedings of IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS 2010), p. 633 (2010)

    Google Scholar 

  18. Ioannou, L.: Computational complexity of the quantum separability problem. Quantum Information and Computation 7, 335 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Jain, R., Watrous, J.: Parallel approximation of non-interactive zero-sum quantum games. In: Proceedings of the 24th IEEE Conference on Computational Complexity, pp. 243–253 (2009)

    Google Scholar 

  20. Kale, S.: Efficient algorithms using the multiplicative weights update method. PhD thesis. Princeton University (2007)

    Google Scholar 

  21. Kobayashi, H., Matsumoto, K., Yamakami, T.: Quantum Certificate Verification: Single versus Multiple Quantum Certificates, quant-ph/0110006 (2001)

    Google Scholar 

  22. Kitaev, A., Shen, A., Vyalyi, M.: Classical and Quantum Computation. American Mathematical Society (2002)

    Google Scholar 

  23. Ling, C., Qi, L., Nie, J., Ye, Y.: Bi-Quadratic Optimization over Unit Spheres and Semidefinite Programming Relaxations. SIAM Journal on Optimization 20(3), 1286–1310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marriott, C., Watrous, J.: Quantum Arthur-Merlin Games. Computational Complexity 14(2), 122–152 (2005)

    Article  MathSciNet  Google Scholar 

  25. Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Comm. Math. Phys., 291 (2009)

    Google Scholar 

  26. Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  27. Watrous, J.: Lecture Notes on Theory of Quantum Information (2008)

    Google Scholar 

  28. Wu, X.: Equilibrium value method for the proof of QIP=PSPACE. arXiv:1004.0264v4 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, Y., Wu, X. (2012). Epsilon-Net Method for Optimizations over Separable States. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31594-7_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31594-7_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31593-0

  • Online ISBN: 978-3-642-31594-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics