Skip to main content

Preventing Unraveling in Social Networks: The Anchored k-Core Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7392))

Abstract

We consider a model of user engagement in social networks, where each player incurs a cost to remain engaged but derives a benefit proportional to the number of engaged neighbors. The natural equilibrium of this model corresponds to the k-core of the social network — the maximal induced subgraph with minimum degree at least k.

We study the problem of “anchoring” a small number of vertices to maximize the size of the corresponding anchored k-core — the maximal induced subgraph in which every non-anchored vertex has degree at least k. This problem corresponds to preventing “unraveling” — a cascade of iterated withdrawals. We provide polynomial-time algorithms for general graphs with k = 2, and for bounded-treewidth graphs with arbitrary k. We prove strong inapproximability results for general graphs and k ≥ 3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brian Arthur, W.: Competing technologies, increasing returns, and lock-in by historical events. The Economic Journal 99(394), 116–131 (1989)

    Article  Google Scholar 

  2. Blume, L.: The statistical mechanics of strategic interaction. Games and Economic Behavior 5, 387–424 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J., 255–269 (2008)

    Google Scholar 

  4. Burke, M., Marlow, C., Lento, T.: Feed me: motivating newcomer contribution in social network sites. In: CHI (2009)

    Google Scholar 

  5. Chwe, M.S.-Y.: Structure and strategy in collective action. American Journal of Sociology 105(1), 128–156 (1999)

    Article  MathSciNet  Google Scholar 

  6. Chwe, M.S.-Y.: Communication and coordination in social networks. Review of Economic Studies 67, 1–16 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R., McCartin, C., Rosamond, F.: Parameterized approximation of dominating set problems. Information Processing Letters 109, 68–70 (2008)

    Article  MathSciNet  Google Scholar 

  8. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61, 1047–1071 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ellison, N.B., Steinfield, C., Lampe, C.: The Benefits of Facebook Friends: Social Capital and College Students’ Use of Online Social Network Sites. Journal of Computer-Mediated Communication (2007)

    Google Scholar 

  10. Farzan, R., Dabbish, L.A., Kraut, R.E., Postmes, T.: Increasing commitment to online communities by designing for social presence. In: CSCW (2011)

    Google Scholar 

  11. Katz, M.L., Shapiro, C.: Network externalities, competition, and compatibility. American Economic Review 75(3), 424–440 (1985)

    Google Scholar 

  12. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)

    Google Scholar 

  13. Kempe, D., Kleinberg, J., Tardos, É.: Influential Nodes in a Diffusion Model for Social Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Morris, S.: Contagion. Review of Economic Studies 67, 57–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mossel, E., Roch, S.: On the submodularity of influence in social networks. In: STOC, pp. 128–134 (2007)

    Google Scholar 

  16. Saaskilahti, P.: Monopoly pricing of social goods. Technical report, University Library of Munich, Germany (2007)

    Google Scholar 

  17. Schelling, T.C.: Micromotives and Macrobehavior. Norton (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A. (2012). Preventing Unraveling in Social Networks: The Anchored k-Core Problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds) Automata, Languages, and Programming. ICALP 2012. Lecture Notes in Computer Science, vol 7392. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31585-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31585-5_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31584-8

  • Online ISBN: 978-3-642-31585-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics