Skip to main content

Perception and Cognition: Two Foremost Ingredients toward Autonomous Intelligent Robots

  • Chapter
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 174))

  • 920 Accesses

Abstract

Inspired by early-ages human’s skills developments, the present paper accosts the robots’ intelligence from a different slant directing the attention to both “cognitive” and “perceptual” abilities. the machine’s (robot’s) shrewdness is constructed on the basis of a Multi-level cognitive concept attempting to handle complex artificial behaviors. The intended complex behavior is the autonomous discovering of objects by robot exploring an unknown environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Westervelt, E.R., Buche, G., Grizzle, J.W.: Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. International J. of Robotics Research 23(6), 559–582 (2004)

    Article  Google Scholar 

  2. Park, J.H., Kwon, O.: Reflex Control of Biped Robot Locomotion on a Slippery Surface. In: Proc. IEEE Conf. on Robotics and Automation, pp. 4134–4139 (2001)

    Google Scholar 

  3. Kuffner, K., Nishiwaki, S., Kagami, M., Inaba, H.: Inoue. Footstep Planning Among Obstacles for Biped Robots. In: Proceedings of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 500–505 (2001)

    Google Scholar 

  4. Chestnutt, J., Kuffner, J.J.: A Tiered Planning Strategy for Biped Navigation. In: Int. Conf. on Humanoid Robots (Humanoids 2004), Proceedings, vol. 1, pp. 422–436 (2004)

    Google Scholar 

  5. Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.: Planning walking patterns for a biped robot. IEEE Transac. on Robotics and Automation 17(3), 280–289 (2001)

    Article  Google Scholar 

  6. Sabe, K., Fukuchi, M., Gutmann, J., Ohashi, T., Kawamoto, K., Yoshigahara, T.: Obstacle Avoidance and Path Planning for Humanoid Robots using Stereo Vision. In: Int. Conf. on Robotics Automation (ICRA), pp. 592–597 (2004)

    Google Scholar 

  7. Holmes, R.: Acts of War: The Behavior of Men in Battle (First American Edition). The Free Press, New York (1985)

    Google Scholar 

  8. Tambe, M., Johnson, W., Jones, R., Koss, F., Laird, J., Rosenbloom, P., Schwamb, K.: Intelligent Agents for Interactive Simulation Environments. AI Magazine 16(1), 15–40 (1995)

    Google Scholar 

  9. Langley, P.: An abstract computational model of learning selective sensing skills. In: Proceedings of the 18th Conference of the Cognitive Science Society, pp. 385–390 (1996)

    Google Scholar 

  10. Bauckhage, C., Thurau, C., Sagerer, G.: Learning Human-Like Opponent Behavior for Interactive Computer Games. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 148–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Potkonjak, V., Kostic, D., Tzafestas, S., Popovic, M., Lazarevic, M., Djordjevic, G.: Human-like behavior of robot arms: general considerations and the handwriting task. Robotics and Computer-Integrated Manufacturing 17(4), 317–327 (2001)

    Article  Google Scholar 

  12. Edlund, J., Gustafson, J., Heldner, M., Hjalmarsson, A.: Towards human-like spoken dialogue systems. J. Speech Communication 50(8-9), 630–645 (2008)

    Article  Google Scholar 

  13. Lubin, A., Poirel, N., Rossi, S., Pineau, A., Houdé, O.: Math in actions: Actor mode reveals the true arithmetic abilities of French-speaking two-year-olds in a magic task. J. of Experimental Child Psychology (103), 376–385 (2009)

    Article  Google Scholar 

  14. Campbell, F.A., Pungello, E.P., Miller-Johnson, S., Burchinal, M., Ramey, C.T.: The development of cognitive and academic abilities: growth curves from an early childhood educational experiment. Dev. Psychol. 37(2), 231–242 (2001)

    Article  Google Scholar 

  15. Leroux, G., Joliot, M., Dubal, S., Mazoyer, B., Tzourio-Mazoyer, N., Houdé, O.: Cognitive inhibition of number/length interference in a Piaget-like task: Evidence from ERP and fMRI. Human Brain Mapping (27), 498–509 (2006)

    Article  Google Scholar 

  16. Lubin, A., Poirel, N., Rossi, S., Lanoé, C., Pineau, A., Houdé, O.: Pedagogical effect of action on arithmetic performances in Wynn-like tasks solved by 2-year-olds. Experimental Psychology (2010)

    Google Scholar 

  17. Cassell, O.C., Hubble, M., Milling, M.A., Dickson, W.A.: Baby walkers; still a major cause of infant burns. Burns 23, 451–453 (1997)

    Article  Google Scholar 

  18. Crouchman, M.: The effects of babywalkers on early locomotor development. Developmental Medicine and Child Neurology (8), 757–761 (1986)

    Google Scholar 

  19. Siegel, A., Burton, R.: Effects of babywalkers on early locomotor development in human infants. Dev. Behav. Pediatr. (20), 355–361 (1999)

    Article  Google Scholar 

  20. Kauffmann, I., Ridenour, M.: Influence of an infant walker on onset and quality of walking pattern of locomotion: an electromyographic investigation. Percept Motor Skills (45), 1323–1329 (1987)

    Article  Google Scholar 

  21. Madani, K., Sabourin, C.: Multi-level cognitive machine-learning based concept for human-like “artificial” walking: application to autonomous stroll of humanoid robots. Neurocomuting 74, 1213–1228 (2011)

    Article  Google Scholar 

  22. Bülthoff, H., Wallraven, C., Giese, M.: Perceptual Robotic. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics. Springer (2007)

    Google Scholar 

  23. http://www.universcience-vod.fr/media/577/la-marche-des-bebes.html

  24. Zukow-Goldring, P., Arbib, M.A.: Affordances, effectivities, and assisted imitation: Caregivers and the directing of attention. Neurocomputing 70, 2181–2193 (2007)

    Article  Google Scholar 

  25. Brand, R.J., Baldwin, D.A., Ashburn, L.A.: Evidence for ‘motionese’: modifications in mothers infant-directed action. Developmental Science 5, 72–83 (2002)

    Article  Google Scholar 

  26. Achanta, R., Hemami, S., Estrada, E., Susstrunk, S.: Frequency-tuned Salient Region Detection. In: IEEE Inrernat. Conf. on Compurer Vision & Pattern Recognition, CVPR (2009)

    Google Scholar 

  27. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it. Nature Reviews Neuroscience 5, 495–501 (2004)

    Article  Google Scholar 

  28. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. IEEE Conference on Computer Vision and Pattern Recognition 2(800), 1–8 (2007)

    Article  MathSciNet  Google Scholar 

  29. Moreno, R., Graña, M., Ramik, D.M., Madani, K.: Image segmentation by spherical coordinates. In: Proc. of 11th Internat. Conf. on Pattern Recognition and Information Processing (PRIP 2011), pp. 112–115 (2011)

    Google Scholar 

  30. Holland, J.H.: Adaptation in Natural anti Artificial Systems: An introductory Analysis with Applications to Biology. In: Control and Artificial Intelligence. MIT Press (1992)

    Google Scholar 

  31. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to detect a salient object. JEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)

    Article  Google Scholar 

  32. Ramík, D.M., Sabourin, C., Madani, K.: Hybrid Salient Object Extraction Approach with Automatic Estimation of Visual Attention Scale. In: Proc. 7th Internat. Conf. on Signal Image Technology & Internet-Based Systems (IEEE – SITIS 2011), pp. 438–445 (2011)

    Google Scholar 

  33. Ramík, D.M., Sabourin, C., Madani, K.: A Cognitive Approach for Robots’ Vision Using Unsupervised Learning and Visual Saliency. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 81–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurosh Madani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madani, K. (2013). Perception and Cognition: Two Foremost Ingredients toward Autonomous Intelligent Robots. In: Ferrier, JL., Bernard, A., Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31353-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31353-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31352-3

  • Online ISBN: 978-3-642-31353-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics